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Preface
This research monograph deals with the dynamic modelling, nonlinear
control and performance evaluation of a ground based mobile air
defence system (ADS).

The present work complements existing references on ground
based ADSs ([69, 108, 142]). The afore-mentioned publications deal
mainly with static or non-mobile ADSs, that is, ADSs that are deployed
at a fixed location. This research monograph deals with a mobile ADS
that consists of an armoured ground vehicle with an integrated rotating
turret and anti-aircraft (AA) gun.

A mobile ADS has several advantages over a fixed ADS as follows.

1.
A mobile ADS can move relatively quickly between various
locations and defend against attacking aerial targets (AATs) as
needed.

 

2.
A mobile ADS can engage mainly AATs and also fixed or moving
ground targets. The mobile ADS can engage targets from a
stationary position or while it is maneuvering on the horizontal
plane and can thus support fast moving motorized ground forces.

 

3.
A mobile ADS can be designed to transport personnel and cargo
internally, and provide protection against a range of battlefield
threats.

 

4.
A mobile ADS can lead to tactical advantages in military
deployments and engagements.

 
The mobile ADS is modelled as a constrained rigid multibody

system. The ground vehicle of the mobile ADS has 4 wheels. It is
assumed that all 4 wheels roll perfectly thus resulting in nonholonomic
velocity constraints. Furthermore, the mobile ADS is controlled by 4
applied torques that are implemented by suitable actuators (for
example, electric motors). First, there is a torque that steers the front
wheels via a steering system (similar to an Ackermann steering system)
leading to holonomic velocity constraints. Second, there is a torque



driving the rear wheels via a differential gearbox and sideshafts
resulting in a holonomic velocity constraint. Third, there is a torque
that rotates the turret in azimuth via a gearbox based mechanism.
Fourth, there is a torque that rotates the AA gun in elevation via a
gearbox based mechanism. The afore-mentioned gearbox based
mechanisms lead to holonomic velocity constraints. It turns out that the
specified configuration of the mobile ADS results in a set of holonomic
and nonholonomic velocity constraints that are not independent.

Thus, kinematic and dynamic models of the mobile ADS need to be
developed. In addition, nonlinear feedback control laws need to be
derived for the applied torques such that given variables associated
with the motion of the vehicle body, the turret and the AA gun
asymptotically track reference command trajectories. Furthermore, the
performance of the mobile ADS needs to be evaluated in engaging a
specified AAT.

Part 1 of the book deals with the dynamic modelling and nonlinear
control of the mobile ADS while Part 2 deals with the performance
evaluation of the mobile ADS against a given AAT. In order to address
these topics several interesting mathematical modelling and nonlinear
control methodologies are presented and applied as follows.

1.
Kinematic modelling of constrained rigid multibody systems
subject to velocity constraints that may not be independent.

 
2.

Extension of the Lagrange equations for the dynamic modelling of
constrained rigid multibody systems subject to velocity constraints
that may not be independent.

 

3.
By applying the above-mentioned methodologies, the kinematic
and dynamic models of the mobile ADS are derived by using all the
velocity constraints in their original form (that is, the redundant
velocity constraints are not deleted).

 

4. Nonlinear control of constrained rigid multibody systems using
inverse dynamics transformations. Analysis of the zero dynamics of
the controlled dynamic model of the multibody system. A nonlinear
feedback control law is derived for the mobile ADS that provides
maneuvering control of the vehicle body and rotational control of
the turret and AA gun This enables the mobile ADS to track and

 



the turret and AA gun. This enables the mobile ADS to track and
engage AATs with the AA gun while independently maneuvering
the vehicle body on the horizontal plane.

5.
Derivation and numerical solution of the point mass flight
dynamics model of the AA projectile consisting of a set of nonlinear
ordinary differential equations (ODEs).

 

6.
Formulation and numerical solution of a conceptual fire control
problem using constrained optimization. The fire control problem
involves the computation of the aiming angles of the AA gun and
the time of flight of the AA projectile to the intercept point with the
center of mass (CM) of the AAT. Reformulation of the fire control
problem using feasible control (co-developed with Prof. Yaakov
Yavin (1935–2006)).

 

7.
Application of a methodology for computing the impact point of the
AA projectile on the three-dimensional body of the AAT.

 
8.

Stochastic modelling of the dispersion of the AA projectiles fired by
the AA gun by considering random initial conditions for the point
mass flight dynamics model of the AA projectile. Computation of
the probability that the AA projectile will impact the body of the
AAT.

 

9.
Application of advanced scientific computing systems, mainly
Maple, MATLAB/MATLAB Symbolic Toolbox, Octave/Octave
Symbolic Package (and also of other systems such as Mathematica,
Maxima), all running under the Linux operating system, in order to
perform the complicated symbolic and numerical computations
required to obtain the above-mentioned results.1 In particular,
machines running Ubuntu Linux and Linux Mint with the MATE
desktop manager are employed.

 

Although a particular type of ground based mobile ADS is
considered in this work, the methodologies presented in Part 1 of the
book can be applied to model the given mobile ADS in greater detail, to
model a mobile ADS with a different configuration, or to model an ADS
that operates in a different domain. Similarly, the methodologies



presented in Part 2 of the book can be applied to evaluate the
performance of the mobile ADS against a variety of AATs. In addition,
different types of AA projectiles and alternative weapon systems can be
considered. Some examples of the above are as follows.

1.
The case where the mobile ADS is moving on a three-dimensional
terrain. In this instance, the rigid bodies comprising the mobile
ADS will rotate in yaw, pitch and roll.

 

2.
More detailed modelling of the mobile ADS, for example, the case
where each wheel consists of a tyre mounted on a hub thus leading
to the possibility of slipping of the wheel, a suspension system for
each wheel, a detailed implementation of the steering system for
the front wheels, etc. More detailed modelling will generally result
in more complicated kinematic and dynamic models of the mobile
ADS.

 

3.
A land based mobile ADS with alternative vehicle configurations,
for example, a vehicle with six or eight wheels, or a vehicle with
tracks.

 

4.
A mobile ADS engaging ground targets and aerial targets using the
following.

(a)
Missiles.  

(b)
Ray based guns employing high power lasers. 

 

5. Weapon systems having a generic turret and gun configuration and
operating in different domains as follows.

(a)
Sea based weapon systems, for example, a turret with a
relevant gun or weapon mounted on a ship.

 
(b)

Air based weapon systems, for example, a turret with a
relevant gun or weapon mounted on a helicopter or aircraft.

 
(c)

Future space based weapon systems, for example, a turret  

 



p p y , p ,
with a relevant weapon mounted on a space craft, space
station or satellite.

6.
Application of some of the methodologies presented in this work to
the case of aerial vehicles engaging moving ground targets, for
example, air-to-ground gunnery ([118]).

 

Part 1 of the book consists of Chaps. 2–5 and Appendices A, B, while
Part 2 includes Chaps. 6–9, as follows.

Chapter 1 : Introduction
A summary is presented of Part 1 and Part 2.
Chapter 2 : Overview of the Mobile Air Defence System
A mathematical description of each rigid body is given, together

with the associated holonomic and nonholonomic velocity constraints.
The mobile ADS comprises  rigid bodies and is controlled by 

 applied torques (variable names like , , , , etc. are

introduced here in order to conveniently denote various quantities).
There are a total of  generalized co-ordinates and thus 15

generalized velocities. In addition, there are a total of  velocity

constraints of which only  are independent. Thus, 

 of the 15 generalized velocities can be selected to be

independent generalized velocities. In this case, the number of
independent generalized velocities is equal to the number of applied
torques, .

Chapter 3 : Kinematic Model of the Mobile Air Defence System
Using all 13 holonomic and nonholonomic velocity constraints and

the methods presented in Appendix A, the kinematic model of the
mobile ADS is derived. The kinematic model describes the 15
generalized velocities in terms of the selected 4 independent
generalized velocities. Note that the inertial velocity of the muzzle of
the AA gun depends on the motions of the AA gun, the turret and the
vehicle body of the mobile ADS.



Chapter 4 : Dynamic Model and Nonlinear Control of the Mobile
Air Defence System

By using the methods presented in Appendix B the basic dynamic
model of the mobile air defence system is derived. The basic dynamic
model describes the 15 generalized accelerations in terms of 15
generalized applied forces and 13 Lagrange multipliers. Four of the
generalized applied forces are nonzero and correspond to the 4 applied
torques. The kinematic model of the mobile ADS is applied in order to
derive the reduced dynamic model of the mobile ADS. The reduced
dynamic model describes the 4 independent generalized accelerations
in terms of the 4 applied torques and does not contain the Lagrange
multipliers.

Thus, the reduced dynamic model is employed in order to derive a
nonlinear feedback control law for the mobile ADS by using inverse
dynamics transformations. The nonlinear feedback control law is for
the 4 applied torques and enables control of 4 variables related to the
motion of the vehicle body, the turret and the AA gun. The zero
dynamics of the controlled dynamic model of the mobile ADS is
analyzed.

A methodology is presented for the computation of the constrained
motion of the controlled dynamic model of the mobile ADS satisfying all
the holonomic and nonholonomic velocity constraints. In addition,
methodologies are presented for computing the vector of generalized
constraint forces and the vector of Lagrange multipliers. Since the
velocity constraints are not independent the vector of Lagrange
multipliers is not unique. Based on the results presented in Appendix B
the Moore-Penrose generalized inverse is applied in order to compute
the vector of Lagrange multipliers having minimum Euclidean norm.

Chapter 5 : Operational Modes of the Mobile Air Defence
System

The operational modes of the mobile ADS consist of various
combinations of the tracking modes of the vehicle body and of the AA
gun. The afore-mentioned tracking modes are based on the nonlinear
feedback control law developed in Chap. 4. In addition, some results
based on the firing rate of the AA gun are presented.

Chapter 6 : Point Mass Flight Dynamics Model of the Anti-
Aircraft Projectile



The point mass flight dynamics model of the AA projectile consists
of a set of nonlinear ODEs and includes a speed-dependent drag
coefficient. The trajectory of the AA projectile is computed by assuming
a completely stationary vehicle body, for a fixed aiming azimuth angle,
and for various aiming elevation angles of the AA gun. The case of zero
wind velocity and the case of non-zero wind velocity are considered.
Note that the inertial velocity of the AA projectile on exit from the
muzzle of the AA gun is the vector sum of the generic firing velocity of
the AA projectile and the inertial velocity of the muzzle of the AA gun.

Chapter 7 : The Fire Control Problem
The formulation and numerical solution of a conceptual fire control

problem FCA is presented. This involves the specification of a finite
number of intercept times of the AA projectile with the CM of the AAT.
For each given intercept time, the required aiming azimuth and
elevation angles of the AA gun are computed as well as the time of flight
of the AA projectile to the CM of the AAT. The fire control problem is
also formulated using feasible control.

The numerical solution of fire control problem FCA is obtained for
the case where the vehicle body of the mobile ADS is completely
stationary and for the case where the vehicle body of the mobile ADS is
moving forward at constant speed and in a straight line. The obtained
numerical results for fire control problem FCA are applied in Chaps. 8
and 9.

Chapter 8 : Computation of the Impact Point of the AA
Projectile on the Body of the Attacking Aerial Target

The geometry of the three-dimensional body of the AAT is specified
and the relative kinematics between the AA projectile and the AAT are
derived. A methodology is presented for computing the impact point of
the AA projectile on the body of the AAT.

Chapter 9 : Computation of the Probability that the AA
Projectile Will Impact the Body of the Attacking Aerial Target

A stochastic model is proposed for the random direction of the
generic firing velocity vector of the AA projectile relative to the
longitudinal axis of the AA gun. The random direction is constructed by
using a random azimuth error angle and a random elevation error
angle.



Thus, the point mass flight dynamics model of the AA projectile is
subject to random initial conditions that are a function of the above-
mentioned random error angles. A computational method is applied in
order to compute the probability that the AA projectile will impact the
body of the AAT. In addition, the computation of the probability that a
burst of AA projectiles will destroy the AAT, and the accumulative
probability that a burst of AA projectiles will destroy the AAT, is
presented. A verification method is applied in order to verify the
computational method used to obtain the probability that the AA
projectile will impact the body of the AAT.

Appendix A: Kinematics of Constrained Rigid Multibody
Systems Subject to Velocity Constraints that May Not be
Independent

Basic assumptions, results and methods are presented on the
kinematics of constrained rigid multibody systems subject to velocity
constraints that may not be independent. For example, the specified
configuration of the mobile ADS leads to a set of holonomic and
nonholonomic velocity constraints that are not independent. The
presented methods can be applied in order to derive the kinematic
model of the multibody system using all the velocity constraints. The
resulting kinematic model describes the generalized velocities in terms
of the selected independent generalized velocities.

Appendix B: Lagrange Equations for Constrained Rigid
Multibody Systems Subject to Velocity Constraints that May Not be
Independent

Basic assumptions, results and methods are presented on the
dynamics of constrained rigid multibody systems. By using the
d’Alembert-Lagrange principle, the Lagrange equations are extended
for the case where the velocity constraints may not be independent.
The results indicate that in the case of independent velocity constraints
the Lagrange multipliers are unique while in the case of dependent
velocity constraints the Lagrange multipliers are not unique. The
Moore-Penrose generalized inverse is applied in order to compute the
vector of Lagrange multipliers having minimum Euclidean norm.

In the literature, the Lagrange equations are usually derived by
assuming that the velocity constraints are independent. Thus, in order
to apply the Lagrange equations to the mobile ADS the set of not



independent velocity constraints has to be converted to a set of
independent velocity constraints (for example, by deleting the
redundant velocity constraints). In general, this approach may imply a
corresponding modification of the given physical configuration of the
multibody system (Chap. 1). Some auxiliary results are presented
dealing with the computation of a general solution of consistent
simultaneous linear equations.

It is recommended that Appendices A, B, are consulted in parallel
with Chaps. 1–9, and particularly with Chaps. 1–5. This will familiarize
the reader with the assumptions and notations used in the derivation of
the kinematic and dynamic models of the mobile ADS and of the
nonlinear feedback control law. Thus, the contents of the book can be
studied in the following sequence.

1.
Chapter 1. (Appendices A, B) 

2.
Chapter 2.  

3.
Chapter 3.  

4.
Chapter 4.  

5.
Chapter 5.  

6.
Chapters 6–9.  
This work will be of interest to the following audiences.

1.
Postgraduate students and advanced undergraduate students
studying at general universities and at national defence universities
for degrees in the following fields.

(a)
Electrical, Mechanical, Aerospace and Industrial Engineering.  

(b)
Applied Mathematics, Physics, Statistics/Stochastics and
Scientific Computing.

 

 



2.
Academic staff working at the above-mentioned university
departments.  

3.
Engineering and science professionals working for the following
organizations.

(a)
Defence-related companies dealing with the development and
manufacture of wheeled vehicles, motorized systems and
mobile air defence systems.

 

(b)
Defence-related research institutes.  

(c)
Research institutes working in the dynamic modelling and
nonlinear control of transportation systems.

 
(d)

Industrial companies dealing with the development and
manufacture of ground vehicles and interested in comparing
alternative approaches to the dynamic modelling of wheeled
vehicles. For example, assuming perfect rolling of the wheels
compared to the case where tyre models are used and where
slipping of the wheels does take place.

 

 

In particular, the research monograph is intended for those that are
interested in one or more of the topics and methodologies enumerated
on p. viii–ix. Enumeration is used in this work in order to present in a
compact form various assumptions, results and methods, as
appropriate.

Constantinos Frangos
Pretoria, South Africa

March 2020
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1. Introduction

Constantinos Frangos1  

Electrical Engineer working in Decision and Control, Pretoria,
South Africa

 

This Chapter presents a summary of Part 1 and Part 2 of the research
monograph as follows.

1.
Part 1: Kinematics, dynamics and nonlinear control of the mobile
air defence system subject to holonomic and nonholonomic
velocity constraints (Chaps. 2, 3, 4, 5 and Appendices A, B).

 

2.
Part 2: Performance evaluation of the mobile ADS against an
attacking aerial target (Chaps. 6, 7, 8 and 9).
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1.1 Part 1: Kinematics, Dynamics and
Nonlinear Control of the Mobile Air Defence
System Subject to Holonomic and
Nonholonomic Velocity Constraints
The mathematical modelling of the mobile ADS is considered by using
the Lagrange equations ([10, 81, 94, 107, 117, 125, 147, 167, 172, 179,
215]). Related applications dealing with the dynamic modelling and
nonlinear control of front-wheel-drive and rear-wheel-drive vehicles
are presented in [60–63].

In this work, the term holonomic velocity constraint is used to refer
to a velocity constraint that can be integrated analytically with respect
to time, to yield a geometric constraint. It follows that if a geometric
constraint is differentiated with respect to time then a holonomic
velocity constraint is obtained. In addition, this work uses the term
nonholonomic velocity constraint to refer to a velocity constraint that
cannot be integrated analytically with respect to time. Thus, it is not
possible to convert a nonholonomic velocity constraint to a geometric
constraint ([23, 101, 129, 147]).

Many references use a more compact terminology as follows. Firstly,
the term holonomic constraint is used to refer to a geometric constraint
and to a holonomic velocity constraint. Secondly, any constraint that
cannot be converted to a holonomic constraint is referred to as a
nonholonomic constraint ([81, 147]).

The mobile ADS consists of  rigid bodies and is controlled

by  applied torques. The vector of generalized co-ordinates 

consists of a total of  elements, , and the vector of

generalized velocities  consists of  elements, 

(bold letters are used to denote vector and matrix quantities). In order
to simplify the presentation it is assumed that the applied torques are
implemented by electric motors. The following holds with regard to the
applied torques.



Firstly, there is a steering system torque associated with the
steering system rotation angle relative to the vehicle body, . If the

steering system is rotated through an angle  then the left and right

front wheels are steered through angles  and , respectively

(Fig. 1.1).

Fig. 1.1 Schematic of the mobile air defence system

Secondly, there is a drive system torque associated with the rotation
angle of the drive system relative to the vehicle body, . The drive

system drives (or rotates) the rear wheels 1 and 2 via a differential
gearbox and side shafts.



Thirdly, there is a torque associated with the rotation angle of the
turret electric motor rotor in azimuth relative to the vehicle body, .

The turret electric motor rotor drives a gearbox based mechanism that
rotates the turret in azimuth relative to the vehicle body by an angle  .

Fourthly, there is a torque associated with the rotation angle of the
AA gun electric motor rotor in elevation relative to the turret, . The

AA gun electric motor rotor drives a gearbox based mechanism that
rotates the AA gun in elevation relative to the turret by an angle .

The operation of the front wheel steering system, the rear-wheel-
drive system, the turret motor drive system and the AA gun motor drive
system lead to holonomic velocity constraints. The assumption that all
four wheels roll perfectly leads to nonholonomic velocity constraints
([23, 73, 129, 147]). Thus, the systems comprising the mobile ADS
result in a total of  holonomic and nonholonomic velocity

constraints of which only  are independent. Thus, 

 of the 15 generalized velocities can be selected to be

independent generalized velocities. In this case, the vector of
independent generalized velocities is selected as follows , , 

,  . Hence, for the mobile ADS, the number of applied torques

is equal to the number of independent generalized velocities, 
.

Let , , denote reference

trajectories for the steering system rotation angle , the drive

system rotational velocity , the turret azimuth rotation angle ,

and the AA gun elevation rotation angle , respectively.

Let the vectors  and , , , be defined as

follows



A nonlinear feedback control law is required for the four applied
torques such that , , , asymptotically tracks the

reference trajectory , , , as follows

(1.1)

The initial values  and  may possibly not coincide with the

initial reference values  and . In this case, the

nonlinear feedback control law should rotate the steering system, the
drive system, the turret and the AA gun such that asymptotic tracking
of the reference trajectories is achieved, (1.1). It is assumed throughout
that the mobile ADS is moving forward at all times.

Most texts on classical mechanics formally derive the Lagrange
equations for constrained rigid multibody systems, by assuming that
the velocity constraints are independent ([10, 36, 81, 147, 172]). Thus,
in order to directly apply the Lagrange equations to a system like the
mobile ADS, not independent velocity constraints have to be converted
to a set of independent velocity constraints. This approach is followed
in [60, 61], for the case of a ground vehicle.



Each velocity constraint is associated with a different Lagrange
multiplier. Furthermore, in some applications Lagrange multipliers
correspond directly to constraint forces or to constraint torques and
thus have units of force (N) or torque (Nm), respectively ([36, 85, 179]).
However, as mentioned in [61], the particular interpretation of the
Lagrange multipliers depends partly on the form and structure of the
velocity constraints.

There are many multibody systems with a given physical
configuration consisting of rigid bodies connected by various types of
joints or links leading to velocity constraints that are not independent.
References [158, 159, 176, 177], discuss the fact that dependent
velocity constraints are common in practical applications. In such cases,
removal of the redundant velocity constraints may imply a
corresponding modification of the given physical configuration of the
multibody system.

Thus, if the specified configuration of a multibody system leads to a
set of velocity constraints that are not independent then the following
should be considered.

1.
If the redundant velocity constraints are directly deleted then this
results in the removal of the associated Lagrange multipliers
(Chaps. 3 and 4).

 

2.
If a reduction procedure is applied (for example, transformation of
the velocity constraints matrix to reduced row echelon form,
Chap. 3) then the form and structure of the resulting independent
velocity constraints may be different to the form and structure of
the original not independent velocity constraints.

 

3.
Deletion or reduction of the redundant velocity constraints may
imply a corresponding modification of the given physical
configuration of the multibody system.

 

4. Deletion or reduction of the redundant velocity constraints may
limit the possibility of a direct correspondence between the
Lagrange multipliers of the resulting system and the constraint
forces and torques present in the original system subject to all the
velocity constraints.

 



Based on the above it appears advantageous to consider all the
velocity constraints together, preserving the original form and
structure of the constraints (Chap. 3).

By using the d’Alembert-Lagrange principle, the Lagrange
equations for constrained rigid multibody systems are extended for the
case where the velocity constraints may not be independent
(Appendices A, B and [62]). It is assumed that the rank of the velocity
constraints matrix is constant for all motions of the system. It is shown
that the following holds.

1.
If the velocity constraints are independent then the vector of
Lagrange multipliers is unique.

 
2.

If the velocity constraints are not independent then the vector of
Lagrange multipliers is not unique.

 
3.

The vector of generalized constraint forces is equal to a unique
vector of expressions.

 
In addition, a method is proposed to practically compute the vector

of Lagrange multipliers using the Moore-Penrose generalized inverse
(Appendix B, and [80, 125, 126]). The proposed method results in the
vector of Lagrange multipliers that has minimum Euclidean norm and
is applicable to cases of independent and not independent velocity
constraints.

References [158, 159, 176, 177], consider the simulation of large-
scale rigid multibody systems subject to dependent velocity constraints
by using the Newton-Euler equations ([50, 155]). The afore-mentioned
references follow an approach that is similar to the one used here and
employ all the velocity constraints and the Moore-Penrose generalized
inverse in order to compute the vector of Lagrange multipliers. The
Moore-Penrose generalized inverse is also widely used in the control of
constrained rigid multibody systems with redundant actuators and/or
redundant sensors ([125, 215]).

Reference [145] considers the case of nonlinear nonholonomic
velocity constraints that may not be independent by applying a general
approach based on the Gauss principle and differential algebraic



equations (DAEs). The framework of DAEs does not seem to be directly
applicable to the derivation of nonlinear feedback control laws for
constrained rigid multibody systems ([154]). In addition, Ref. [145]
considers computational examples involving mainly uncontrolled
multibody systems subject to linear nonholonomic velocity constraints
that are independent.

In summary, the following analyses and derivations regarding the
kinematics, dynamics and nonlinear control of the mobile ADS are
presented ([60–62]).

1.
Basic description of the rigid bodies comprising the mobile ADS
and the resulting holonomic and nonholonomic velocity
constraints. In this case, the velocity constraints are not
independent.

 

2.
Derivation of the kinematic model of the mobile ADS by using all
the velocity constraints. The kinematic model describes the vector
of generalized velocities  in terms of the vector of independent

generalized velocities  ([23, 73, 81, 147, 155, 174]).

 

3.
Derivation of the basic dynamic model of the mobile ADS
describing the vector of generalized accelerations  in terms

of the vector of generalized applied forces , , and the

vector of Lagrange multipliers , . The 4 nonzero elements

of the vector of generalized applied forces  have units of torque

(Nm) and correspond to the 4 applied torques.

 

4.
Derivation of the reduced dynamic model of the mobile ADS
describing the vector of independent generalized accelerations 

 in terms of the 4 applied torques. The reduced dynamic

model does not include the vector of Lagrange multipliers  ([23,

73, 81, 147, 155, 174]).

 

Thus, the reduced dynamic model of the mobile ADS is used in



5.
us, t e educed dy a c ode  o  t e ob e S s used 

order to derive a nonlinear feedback control law by employing
inverse dynamics transformations. In particular, the nonlinear
feedback control law is derived for the applied torques such that
the mobile ADS achieves the specified asymptotic tracking
performance, (1.1) ([35, 99, 124, 153]). The closed loop nonlinear
control system consists of the combination of the kinematic and
reduced dynamic models of the mobile ADS and of the nonlinear
feedback control law, and is referred to as the controlled dynamic
model of the mobile ADS.

 

6.
Analysis of the zero dynamics of the controlled dynamic model of
the mobile ADS.

 
7.

Methodology for the computation of the constrained motion of the
controlled dynamic model of the mobile ADS satisfying all the
holonomic and nonholonomic velocity constraints.

 

8.
Methodology for the computation of the vector of generalized
constraint forces , , by using the constrained motion of

the controlled dynamic model of the mobile ADS.

 

9.
Methodology for the computation of the vector of Lagrange
multipliers  by using the vector of generalized constraint forces 

 and by computing the Moore-Penrose generalized inverse of

the transpose of the velocity constraints matrix.

 

The Newton-Euler equations for constrained rigid multibody
systems subject to velocity constraints that are independent are
presented in [10, 81, 125, 215] (for computer implementations,
extensions and applications see [3, 50, 117, 141, 150, 151, 154, 160,
162, 174, 181]).

In [63, 64], by using the d’Alembert principle ([81]), the Newton-
Euler equations for constrained rigid multibody systems are extended
for the case where the velocity constraints may not be independent
([158, 159, 176, 177]). By applying the Newton-Euler equations
developed in [63, 64], the basic dynamic model of the mobile ADS is



derived, and is verified to be identical to the basic dynamic model
obtained by using the Lagrange equations (Chap. 4).

The approach followed in this work is similar to the approach
followed in [129] (see also [26, 45, 106, 107, 146]). Reference [129]
considers the mathematical modelling of various types of vehicles and
assumes in some cases perfect rolling of the wheels. The assumption of
perfect rolling of the wheels leads to nonholonomic velocity constraints
being imposed on the motion of the vehicle ([23]). In this case, the
framework of Lagrangian mechanics generates the required
generalized constraint forces in order to enforce the velocity
constraints.

Alternative methods have been used in the modelling and control of
various ground vehicles, see for example [25, 86, 87, 129, 185], and the
references given there. Reference [25] presents the modelling and
control of a four-wheel mobile robot with skid-steering. In this case, the
wheels skid in order to maneuver the vehicle. In [86, 87], the modelling
and control of a heavy truck is presented, and the wheels are allowed to
slip during vehicle maneuvers. Thus, in [25, 86, 87], perfect rolling of
the wheels is not assumed, and specific models are used in order to
compute the forces at the point of contact of each wheel with the
horizontal plane. Since perfect rolling of the wheels is not assumed, the
corresponding nonholonomic velocity constraints are not applicable.
Reference [185] presents a number of additional vehicle drive system
configurations including tracked vehicles.

The control design procedure used in this work employs inverse
dynamics transformations ([25, 35, 41, 99, 153, 154, 162, 167, 182]).
The control design procedure has been used to develope nonlinear
feedback control laws for ground vehicles ([60–64]), a rolling disk ([47,
58]), and an autonomous bicycle1 ([213]). One advantage of this
approach is that a nonlinear feedback control law is obtained for a
complicated nonlinear dynamic model of the mobile ADS with vector of
generalized co-ordinates in .

Alternative methods for the control of nonlinear systems are
presented in [88, 99, 109, 130, 167]. Some of these methods are based
on differential geometric techniques, and seem difficult to apply to
nonlinear systems of high order. For additional references on nonlinear



control methods and applications see [28, 29, 31, 49, 53, 54, 103, 134,
170].



1.2 Part 2: Performance Evaluation of the
Mobile Air Defence System Against an
Attacking Aerial Target
The performance evaluation of the mobile ADS against a given AAT is
considered (Chaps. 6, 7, 8 and 9).

Chapter 6 deals with the point mass flight dynamics model of the AA
projectile ([8, 9, 24, 79, 115, 116, 122]) as follows.

1.
The AA projectile is considered to be a point mass and the flight
dynamics model describes the inertial motion of the point mass
using a set of nonlinear differential equations ([79, 115]). The
rotational motion of the actual AA projectile is not considered.

 

2.
The differential equations of the point mass model together with
the specified initial condition define an initial value problem. The
final time of the initial value problem is determined by the impact
of the AA projectile on the ground represented by the inertial (X, Y)
plane ([44, 119]).

 

3.
The AA gun fires a single projectile at a sequence of increasing
aiming elevation angles and at a fixed aiming azimuth angle. It is
assumed throughout that the mobile ADS remains completely
stationary from the firing time until the time the projectile impacts
the inertial (X, Y) plane. The case of zero wind velocity and the case
of a given cross wind velocity are considered.

 

4.
In all cases, the trajectory of the AA projectile is computed by
solving numerically the initial value problem using a fourth order
Runge-Kutta algorithm with a fixed time-step ([44]).

 

Chapter 7 presents the formulation and numerical solution of a
conceptual fire control problem FCA as follows.

1. Fire control problem FCA involves the specification of a finite
number of intercept times of the AA projectile with the CM of the  



AAT, , . The associated firing times , 

, are obtained as shown below.

2.
For each given intercept time  the following quantities are

computed.

a.
The inertial azimuth and elevation angles of the fire control
(FC) vector, , . At time , the aiming

azimuth and elevation angles of the AA gun are equal to 
 and , respectively.

 

b.
The time of flight of the AA projectile to the CM of the AAT, 

.
 

c.
It follows that the firing time of the AA projectile is 

.
 

 

3.
The fire control problem is also formulated using feasible
control ([55, 56, 59, 210–212]).

 
4.

A schematic of the deployment of the mobile ADS and the
trajectory of the AAT is shown in Fig. 1.2. The defended location is
at the origin  of the inertial co-ordinate system (X, Y, Z). The

computational results obtained for fire control problem FCA are
applied directly in the performance evaluation of the mobile ADS
against the AAT in Chaps. 8 and 9.

 



Fig. 1.2 Schematic of the deployment of the mobile ADS and the attacking aerial target; the
defended location is at the origin 

Chapter 8 deals with the following.

1.
The geometry of the three-dimensional body of the AAT is given in
Fig. 1.3. A body reference frame  is defined with origin fixed at

the center of mass of the AAT.

 

2.
A methodology is presented for computing the impact point of the
AA projectile on the body of the AAT relative to the origin of the
body reference frame  and expressed in .

 



Fig. 1.3 Schematic of the attacking aerial target

Chapter 9 deals with the following.

1.
The stochastic model describing the dispersion of the AA
projectiles fired by the AA gun.

 
2.

Computation of the probability that the AA projectile fired at time 
 will impact any point on the body of the AAT, .

 

3.
The vulnerability model of the AAT assumes that if one or more AA
projectiles impact the body of the AAT then the AAT is destroyed.
Thus, if one AA projectile is fired then the probability that the AAT
will be destroyed is .

 

4.
Computation of the probability that a burst of  AA projectiles

will destroy the AAT, and the accumulative probability that a burst
of  AA projectiles will destroy the AAT.

 

5.
A verification method is applied in order to verify the
computational method used to obtain the probability .

 



1

Subsequent Chapters refer to Figs. 1.1, 1.2 and 1.3. These Figures
are repeated there for convenience and for ease of reference.

Footnotes
“Life is like riding a bicycle. To keep your balance you must keep moving”— Albert Einstein,

world famous physicist and winner of the 1921 Nobel Prize in Physics for his discovery of the
law of the photoelectric effect, [48].
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2. Overview of the Mobile Air Defence
System

Constantinos Frangos1  

Electrical Engineer working in Decision and Control, Pretoria,
South Africa

 

This Chapter presents an overview of the mobile air defence system as
follows.

1.
The mobile ADS is a constrained rigid multibody system consisting
of several connected rigid bodies (Fig. 2.1).

 
2.

A detailed description of each rigid body is given together with the
associated holonomic and nonholonomic velocity constraints.

 
3.

A number of variables related mainly to the AA gun are defined.  

2.1 Multibody System Representation of the
Mobile Air Defence System
The mobile air defence system considered in this work is modelled as a
constrained rigid multibody system (Fig. 2.1). It is assumed that the
mobile ADS is controlled by  applied torques.

https://doi.org/10.1007/978-3-030-55498-9_2


Fig. 2.1 Schematic of the mobile air defence system

First, there is a steering system torque  that steers the front

wheels via a steering system. Second, there is a drive system torque 

that drives the rear wheels via a differential gearbox and sideshafts.
Third, there is a torque  that rotates the turret in azimuth via a

gearbox based mechanism. Fourth, there is a torque  that rotates the

AA gun in elevation via a gearbox based mechanism.
In order to simplify the presentation it is assumed that the applied

torques are implemented by 4 electric motors denoted by , 



,  and , respectively. The electromagnetic transients of the

electric motors are not taken into account. In particular, it is assumed
that there is an ideal closed-loop controller for each of the 4 electric
motors ensuring that each motor produces the specified reference
torque value instantaneously, that is, , ,  and ,

respectively.
The mobile ADS consists of a total of  rigid bodies,

(2.1)

The designation of each rigid body is indicated in subsequent Sections.
All co-ordinate systems used in this work are right-handed Cartesian
co-ordinate systems. It is assumed that there is an inertial reference
frame I and an associated co-ordinate system (X, Y, Z) with unit vectors 

 and with origin fixed at point , Fig. 2.1 (Appendix A).

Furthermore, for each rigid body i, there is a body reference frame 

and an associated co-ordinate system  with unit vectors 

 and with origin fixed at the center of mass of rigid body i,

 ((A.3), Appendix A). Thus, body reference frame 

translates and rotates together with rigid body i.
In order to simplify the dynamic model of the mobile ADS the

following assumptions are made.

1.
The centers of mass of the four wheels, the turret, the drive system,
the steering system and the turret electric motor rotor are fixed
relative to the origin of the body reference frame of the vehicle
body.

 

2.
The center of mass of the AA gun electric motor rotor is fixed
relative to the origin of the body reference frame of the turret.

 
The following quantities and notations are relevant in the kinematic

and dynamic modelling of the mobile ADS (Appendices A and B).



1. The unit vectors of body reference frame  expressed in the

inertial reference frame I are denoted by   . The

rotation matrix from the body reference frame  to the inertial

reference frame I, , is defined in terms of the afore-

mentioned unit vectors as follows

(2.2)

 

2.
The rotation axis sequence is . The associated Euler

angles are denoted by  in azimuth,  in elevation, and  in

roll and are provided for the case of the vehicle body, the turret
and the AA gun, that is, for rigid bodies 5, 6, 7, respectively. It
follows that

(2.3)

 

3.
All four wheels have equal radius denoted by a.  

4.
The angular velocity   of the body reference frame  with

respect to the inertial reference frame I and expressed in the body
reference frame  is given by

(2.4)

 

5.
The inertial position   and the inertial velocity    

of the center of mass of rigid body i are given by

(2.5)

 

For each rigid body i denotes the mass and



6.
For each rigid body i,  denotes the mass, , and 

denotes the inertia matrix about the center of mass and expressed
in the body reference frame ,   , 

(Appendix B).

 

7.
The gravitational force acting at the center of mass of rigid body i
and expressed in the inertial reference frame I is given by

(2.6)

where g is the gravitational acceleration,  m/s .

 

8.
In the case of the mobile ADS, the resultant applied forces are all
zero, , .

 

9.
The resultant applied torque  acting about the center of mass

of rigid body i and expressed in the body reference frame  is

given by   , and   . The

resultant applied torque  is expressed in terms of the applied

torques , , , , as appropriate.

 

10.
The geometric and velocity constraints applicable to rigid body i.
The time derivative of the geometric constraints together with the
velocity constraints result in a set of holonomic and
nonholonomic velocity constraints for the mobile ADS that are not
independent.

 

11. The kinetic energy, , and potential energy, , of rigid body i

are given by
 



(2.7)

(2.8)

12.
The notation  and  denotes the first and second derivatives of x

with respect to time t.

 

Hereafter, the details of each rigid body comprising the mobile ADS
are presented.

2.2 Vehicle Body (Body 5)
The vehicle body is designated as Body 5. The body reference frame 

has an associated co-ordinate system  with unit vectors 

 defined below, and with origin fixed at the center of

mass of the vehicle body, that is, point B in Fig. 2.1. The relevant
rotation matrix is given by

(2.9)

It is assumed that the vehicle body translates parallel to the inertial
(X, Y) plane and rotates about the  axis that is always parallel to the

inertial Z axis. It follows that the  plane is always parallel to

the inertial (X, Y) plane. Various systems of the mobile ADS rotate with
respect to the vehicle body. In some cases this involves rotation about
an axis that is parallel to the  axis.

Define  to be a unit vector along the line that passes through the

centers of wheels 1 and 2 (Fig. 2.1) given by
(2.10)



Let  be a unit vector orthogonal to  given by

(2.11)

The unit vectors of the body reference frame  are given by

(2.12)

The Euler angles of the vehicle body are obtained from (2.3), and are
given by

(2.13)

The angular velocity of the body reference frame  with respect to the

inertial reference frame I is given by

(2.14)

Let  denote the inertial position of point O in the vehicle body

(Fig. 2.1), and  the inertial position of the vertical projection of

point O onto the inertial (X, Y) plane, given by

(2.15)

(2.16)

Let  denote the inertial position of the center of mass of the vehicle

body (point B in Fig. 2.1) given by

(2.17)



where  denotes the vertical distance of point B above the inertial

(X, Y) plane, , . By using (2.15), (2.16), (2.17), the inertial

velocities , , are obtained as follows

(2.18)

(2.19)

The variables x, y and  are part of the generalized co-ordinates of the

mobile ADS. The mass of the vehicle body  is given by

(2.20)

It is assumed that the inertia matrix of the vehicle body, , is given

by ([10, 81])

(2.21)

where , , , .

2.2.1 Electric Motors ,  and 

The following assumptions are employed with regard to the electric
motors ,  and .

1. The stators of the electric motors ,  and  are

rigidly mounted on the vehicle body, and thus form part of the
 



vehicle body.
2.

The rotor of the drive system electric motor  forms part of

the drive system that extends outside of the electric motor. Thus,
the resultant applied torque acting about the center of mass of the
drive system (Body 8) is given by

(2.22)

 

3.
The rotor of the steering system electric motor  forms part of

the steering system that extends outside of the electric motor. Thus,
the resultant applied torque acting about the center of mass of the
steering system (Body 9) is given by

(2.23)

 

4.
The rotor of the turret electric motor  drives a gearbox based

mechanism whose output rotates the turret relative to the vehicle
body in azimuth. Thus, the resultant applied torque acting about
the center of mass of the rotor of electric motor  (Body 10) is

given by

(2.24)

 

5.
Newton’s third law states that “for every action there is an equal
and opposite reaction” ([10, 81]). It is assumed here that electric
motors ,  and  satisfy Newton’s third law

(extended for the case of torques).

 

6. Thus, it follows from the above that there is a reaction torque 
 acting on the stator of electric motor , a reaction

torque  acting on the stator of electric motor , and a

reaction torque  acting on the stator of electric motor 

 



(pp. 573–575, [42]).
7.

Furthermore, since the stators of the electric motors , 

and , form part of the vehicle body, it follows that the above-

mentioned reaction torques sum to a resultant applied torque
acting about the center of mass of the vehicle body (Body 5) given
by ((2.12))

(2.25)

(For other applications involving electric motor reaction torques
refer to Example 9.2, pp. 494–496, and Exercises 4, 6, 20, pp. 542–
544, [10].)

 

2.3 Wheels 1, 2, 3 and 4 (Body 1 to Body 4)
The vehicle wheels 1, 2, 3 and 4 are designated as Body 1, Body 2, Body
3 and Body 4, respectively (Fig. 2.1). The body reference frame of wheel
i is  and has an associated co-ordinate system  with

unit vectors  defined below, and with origin fixed at the

center of mass of wheel i, that is, at the center of wheel i, .

The relevant rotation matrix of wheel i is given by

(2.26)

With regard to wheels 1 and 2, define the vectors

(2.27)



where  is the rotation angle of wheel i relative to the vehicle body

and about an axis through the center of wheel i and parallel to , 

, respectively (Fig. 2.1). Hence,  and  are always in the plane

of wheel i, . The unit vectors of the body reference frame  of

wheel i, , are given by

(2.28)

The angular velocity of the body reference frame , , with

respect to the inertial reference frame I is given by

(2.29)

(2.30)

With regard to wheels 3 and 4, define the vectors

(2.31)

(2.32)

where

(2.33)

and where  is the rotation angle of wheel i relative to the vehicle

body and about an axis through the center of wheel i and parallel to ,

and  is the steering angle of wheel i relative to the vehicle body and

about an axis through the center of wheel i and perpendicular to the 



 plane, , respectively (Fig. 2.1). Hence,  and  are

always in the plane of wheel i, . The unit vectors of the body

reference frame  of wheel i, , are given by

(2.34)

The angular velocity of the body reference frame , , with

respect to the inertial reference frame I is given by

(2.35)

(2.36)

Let  denote the inertial position of the center of mass of wheel i, 

, respectively, given by

(2.37)

(2.38)

where

and where  denotes the length of the lines joining the centers of the

front wheels, and the centers of the rear wheels, , .

Denote by  the inertial velocity of the center of mass of wheel i given

by
(2.39)



In this case, the variables , , , ,  and  are part of the

generalized co-ordinates of the mobile ADS. Wheel i has a mass 

given by

(2.40)

It is assumed that the inertia matrix of wheel i, , is diagonal and is

given by

(2.41)

where , .

2.3.1 Velocity Constraints
It is assumed that each wheel rolls perfectly. This assumption leads to
the following nonholonomic velocity constraints at the point of contact
of wheel i with the (X, Y) plane ([58, 129]),

(2.42)

where  denotes the 3 by 1 matrix of zeros. Using (2.42), the

following constraints are obtained for each wheel.
Wheel 1:

(2.43)

(2.44)

Wheel 2:

(2.45)



(2.46)

Wheel 3:

(2.47)

(2.48)

Wheel 4:

(2.49)

(2.50)

It is not difficult to show that the inertial velocity vector of the center of
wheel i,  ((2.42)), lies in the plane of wheel i, 

, respectively.

During the motion of the vehicle, the virtual rectangle that consists
of the four corners that coincide with the centers of the four wheels has
constant shape and dimensions and moves in a fixed plane parallel to
the (X, Y) plane. Thus, the inertial velocities of the four corners of the
virtual rectangle are , , respectively, (2.39).

It follows that the instantaneous center of rotation (ICR) of the
above-mentioned virtual rectangle lies at the intersection of lines
parallel to the (X, Y) plane, that pass through the centers of wheels 4, 3,
2 and 1, and that are perpendicular to the wheel center velocity vectors 

, ,  and , respectively, [172] (Fig. 2.1). The steering

system steers the front wheels such that the above-mentioned relations
with respect to the ICR are satisfied and is similar to an Ackermann
steering system ([18]).

2.4 Turret (Body 6)



The turret is designated as Body 6. The body reference frame  has an

associated co-ordinate system , ,  with unit vectors 

 defined below, and with origin fixed at the center of

mass of the turret, that is, point T in Fig. 2.1. The relevant rotation
matrix is given by

(2.51)

The turret rotates relative to the vehicle body in azimuth via a revolute
joint with a circular coupling between the two bodies. The axis of
rotation of the turret is a line that passes through the center of the
circular coupling and coincides with the  axis. Thus, the center of

mass T of the turret lies on the axis of rotation of the turret. In addition,
the  axis is always parallel to the  axis of the vehicle body

reference frame implying that the  plane is always parallel to

the  plane.

Let  denote the rotation angle of the turret relative to the vehicle

body in azimuth (Fig. 2.1). The unit vectors of the body reference frame 
 are given by

(2.52)

(2.53)

(2.54)

The Euler angles of the turret are obtained from (2.3) and are given by

(2.55)



The angular velocity of the turret body reference frame  with respect

to the inertial reference frame I is given by

(2.56)

Let  denote the inertial position of the center of mass of the turret

(point T in Fig. 2.1) given by

(2.57)

where  is a fixed vector in the body reference frame of the vehicle

body . Let  denote the inertial velocity of the center of mass of

the turret given by

(2.58)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The mass of the turret  is given by

(2.59)

It is assumed that the inertia matrix of the turret, , is diagonal and

is given by

(2.60)

where , , .

2.4.1 Electric Motor 

By using the same approach as in Sect. 2.2.1, the following results are
obtained with regard to the AA gun electric motor .



1.
The stator of the electric motor  is rigidly mounted on the

turret and thus forms part of the turret.

 

2.
The resultant applied torque acting about the center of mass of the
rotor of electric motor  (Body 11) is given by

(2.61)

( , (2.52), (2.130)).

 

3.
It is assumed that the electric motor  satisfies Newton’s third

law (extended for the case of torques).

 

4.
Thus, it follows from the above that there is a reaction torque 

 acting on the stator of electric motor .
 

5.
The above-mentioned reaction torque acts as a resultant applied
torque about the center of mass of the turret (Body 6) given by
((2.52))

(2.62)

 

2.5 Anti-Aircraft Gun (Body 7)
The AA gun is designated as Body 7. The body reference frame  has

an associated co-ordinate system , ,  with unit vectors 

 defined below, and with origin fixed at the center of

mass of the AA gun, that is, point G in Fig. 2.1. The relevant rotation
matrix is given by

(2.63)



The AA gun is carried by a mechanical structure that is rigidly attached
to the turret such that the following holds.

1.
The AA gun rotates relative to the turret in elevation via a revolute
joint and about an axis passing through point H (Fig. 2.1). The
rotation axis is perpendicular to the longitudinal axis of the AA gun,
and is parallel to the  plane (and to the  plane).

 

2.
Point H lies on the axis of rotation of the turret, that is, the  axis,

and is vertically above point T, the center of mass of the turret.
Point H is fixed in the body reference frames of the turret and of the
vehicle body. In order to simplify the presentation point H is
alternatively referred to as the hinge point H of the AA gun.

 

3.
The AA gun rotates together with the turret relative to the vehicle
body in azimuth.

 
4.

Point M lies on the longitudinal axis and at the exit of the AA gun
(Fig. 2.1). In order to simplify the presentation point M is
alternatively referred to as the AA gun muzzle.

 

Let  denote the rotation angle of the AA gun relative to the turret

in elevation. In this work only motions of the mobile ADS are
considered such that  satisfies the following constraint

(2.64)

The unit vectors of the body reference frame  are given by

(2.65)

(2.66)



(2.67)

The Euler angles of the AA gun are obtained from (2.3), and are given
by

(2.68)

The angular velocity of the body reference frame  with respect to the

inertial reference frame I is given by

(2.69)

The distance from point H to point G is denoted by , and the distance

from point H to point M is denoted by  (Fig. 2.1). Let  denote the

inertial position of the center of mass of the AA gun (point G in Fig. 2.1)
given by

(2.70)

(2.71)

where  is the vector from point T to point H, and is a fixed vector in

the body reference frame of the turret . Let  denote the inertial

velocity of the center of mass of the AA gun given by

(2.72)

For later reference, the inertial position, velocity and acceleration of the
hinge point H of the AA gun are given by ((2.16), (2.19))

(2.73)



(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The mass of the AA gun  is given by

(2.79)

It is assumed that the inertia matrix of the AA gun, , is diagonal

and is given by
(2.80)



where , , .

2.6 Drive System and Differential Gearbox
(Body 8)
The drive system is designated as Body 8. The body reference frame 

has an associated co-ordinate system , ,  with unit vectors 

 defined below, and with origin fixed at the center of

mass of the drive system. The relevant rotation matrix is given by

(2.81)

Let  denote the rotation angle of the drive system relative to the

vehicle body and about an axis parallel to  (Fig. 2.1). The unit vectors

of the body reference frame  are given by

(2.82)

(2.83)

(2.84)

The angular velocity of the body reference frame  with respect to the

inertial reference frame I is given by

(2.85)



Let  denote the inertial position of the center of mass of the drive

system given by

(2.86)

where  denotes the vertical distance of the center of mass above the

inertial (X, Y) plane, , . Let  denote the inertial velocity

of the center of mass of the drive system given by

(2.87)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The equivalent mass of the drive system is given by

(2.88)

It is assumed that the inertia matrix of the drive system, , is

diagonal and is given by

(2.89)

where , .

With reference to Sect. 2.2.1, the electric motor  exerts a

torque  about the center of mass of the drive system. Thus, the

resultant applied torque is given by

(2.90)

2.6.1 Velocity Constraint
The simplified kinematic model of the differential gearbox introduces
the following velocity constraint (p. 294, [95]),



(2.91)

where , and  denotes the gear ratio of the differential

gearbox, . In this case , implying that

(2.92)

2.7 Steering System (Body 9)
A steering system implementing the basic relations of the Ackermann
steering system ([18]) is considered. In order to simplify the kinematic
and dynamic models of the mobile ADS, the steering system is modelled
as a lumped mass and designated as Body 9. The body reference frame 

 has an associated co-ordinate system , ,  with unit

vectors  defined below, and with origin fixed at the

center of mass of the steering system. The relevant rotation matrix is
given by

(2.93)

Let  denote the rotation angle of the steering system relative to the

vehicle body and about the  axis that is always parallel to the 

axis of the vehicle body reference frame. It is assumed that if the
steering system is turned through an angle  then an upright virtual

wheel with center located at point  is steered through an angle 

while at the same time wheel 3 is steered through an angle  and

wheel 4 is steered through an angle  (the line of symmetry of the

virtual wheel is shown in Fig. 2.1). The virtual wheel has radius a and is
assumed to roll perfectly on the (X, Y) plane.

The unit vectors of the body reference frame  are given by



(2.94)

(2.95)

(2.96)

The angular velocity of the body reference frame  with respect to the

inertial reference frame I is given by

(2.97)

Let  denote the inertial position of the center of mass of the steering

system given by

(2.98)

where  denotes the vertical distance of the center of mass above the

inertial (X, Y) plane, , . Let  denote the inertial velocity

of the center of mass of the steering system given by

(2.99)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The equivalent mass of the steering system is given by

(2.100)

It is assumed that the inertia matrix of the steering system, , is

diagonal and is given by

(2.101)



where , .

With reference to Sect. 2.2.1, the electric motor  exerts a

torque  about the center of mass of the steering system. Thus, the

resultant applied torque is given by

(2.102)

2.7.1 Geometric Constraints
Let  denote the inertial velocity of the center of the virtual wheel,

that is, point . Then, the line parallel to the (X, Y) plane, passing

through the point  and perpendicular to the velocity vector ,

passes through the ICR (Fig. 2.1).
It follows from the above and Fig. 2.1 that the vehicle steering

system results in the following nonlinear geometric
constraints between  and , and between  and ,

(2.103)

(2.104)

subject to

(2.105)

(2.106)

where

(2.107)



denotes the four-quadrant arctangent function,  denotes

the principal argument of , , , , and in

this case , (2.103)–(2.106) ([1, 4]). From (2.105), (2.106), it

follows that

(2.108)

Henceforward, only vehicle motions for which (2.105), (2.106), (2.108),
are satisfied will be considered. Using (2.108), (2.103), (2.104), the
limits of the front wheel steering angles  and  are as follows

(2.109)

(2.110)

In Chap. 4, a methodology is presented for computing the constrained
motion of the controlled dynamic model of the mobile ADS. In
particular, (2.103)–(2.104) are used to accurately compute the steering
angles , , as functions of time given the computed steering system

turning angle  as a function of time. Thus, the geometric constraints

(2.103)–(2.104) are not used to eliminate the variables , , from the

generalized co-ordinates. In this instance, the result is that some of the
entries of the mass matrix  of the basic dynamic model of the mobile

ADS are relatively simple (Chap. 4).
In [60, 61], a vehicle is considered with a simpler front wheel

steering system model. The associated nonlinear geometric constraint



relates  to  and is similar in form to (2.103). In this case, the

geometric constraint is used to eliminate  from the vehicle

generalized co-ordinates. The result is that some of the entries of the
mass matrix  in the corresponding basic dynamic model of the

vehicle, are more complicated ([60, 61]).
By using (2.108), the lower and upper limits for  are given by

(2.111)

The following relations are obtained from (2.103)–(2.106),

(2.112)

where

(2.113)

Since the system motion is assumed to satisfy the constraints (2.105),
(2.106), it follows from (2.113) that the following strict inequalities
hold,

(2.114)

for all  that satisfy (2.105), (2.106). By using (2.103)–(2.108), and

assuming that the mobile ADS is moving forward (Fig. 2.1), the
following holds.

1.
If the steering system turning angle  then , ,

implying that the mobile ADS moves in a straight line.

 

2. If the steering system turning angle  then ,

i l i g th t th bil ADS t t th l ft



implying that the mobile ADS turns to the left.
 3.

If the steering system turning angle  then ,

implying that the mobile ADS turns to the right.

 

2.7.2 Velocity Constraints
By differentiating the geometric constraints (2.103), (2.104), with
respect to time, the following two velocity constraints are obtained

(2.115)

(2.116)

where , , are given by (2.113).

2.8 Rotor of the Turret Electric Motor 

(Body 10)
The rotor of the turret electric motor  is designated as Body 10.

The body reference frame  has an associated co-ordinate system 

, ,  with unit vectors  defined below,

and with origin fixed at the center of mass of the rotor. The relevant
rotation matrix is given by

(2.117)

Let  denote the rotation angle of the rotor relative to the vehicle body

in azimuth and about the  axis that is always parallel to the 



axis of the vehicle body reference frame. The unit vectors of the body
reference frame  are given by

(2.118)

(2.119)

(2.120)

The angular velocity of the body reference frame  with respect to

the inertial reference frame I is given by

(2.121)

Let  denote the inertial position of the center of mass of the rotor

given by

(2.122)

where  is the vector from the center of mass of the vehicle body to

the center of mass of the rotor, and  is fixed in the body reference

frame of the vehicle body . Let  denote the inertial velocity of the

center of mass of the rotor given by

(2.123)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The mass of the rotor  is given by

(2.124)



It is assumed that the inertia matrix of the rotor, , is diagonal and

is given by

(2.125)

where , .

With reference to Sect. 2.2.1, the turret electric motor  exerts

a torque  about the center of mass of its rotor. Thus, the resultant

applied torque is given by

(2.126)

2.8.1 Velocity Constraint
The rotor of the turret electric motor  drives a gearbox based

mechanism that rotates the turret relative to the vehicle body in
azimuth. The above-mentioned gearbox based mechanism results in the
following velocity constraint (pp. 286–287, [95])

(2.127)

where  denotes the effective gear ratio, . It is further

assumed that the construction of the gearbox based mechanism is such
that the following geometric constraint is obtained from (2.127),

(2.128)

2.9 Rotor of the AA Gun Electric Motor 

(Body 11)



The rotor of the AA gun electric motor   is designated as Body 11.

The body reference frame  has an associated co-ordinate system 

, ,  with unit vectors  defined below,

and with origin fixed at the center of mass of the rotor. The relevant
rotation matrix is given by

(2.129)

Let  denote the rotation angle of the rotor relative to the turret in

elevation and about the  axis that is always parallel to the  axis

of the turret reference frame. The unit vectors of the body reference
frame  are given by

(2.130)

(2.131)

(2.132)

The angular velocity of the body reference frame  with respect to

the inertial reference frame I is given by

(2.133)

Let  denote the inertial position of the center of mass of the rotor

given by

(2.134)



where  is the vector from the center of mass of the turret to the

center of mass of the rotor, and  is fixed in the body reference frame

of the turret . Let  denote the inertial velocity of the center of

mass of the rotor given by

(2.135)

The variable  is part of the generalized co-ordinates of the mobile

ADS. The mass of the rotor  is given by

(2.136)

It is assumed that the inertia matrix of the rotor, , is diagonal and

is given by

(2.137)

where , .

With reference to Sect. 2.2.1, the AA gun electric motor  exerts

a torque  about the center of mass of its rotor. Thus, the resultant

applied torque is given by

(2.138)

2.9.1 Velocity Constraint
The rotor of the AA gun electric motor  drives a gearbox based

mechanism that rotates the AA gun relative to the turret in elevation.
The above-mentioned gearbox based mechanism results in the
following velocity constraint (pp. 286–287, [95])



(2.139)

where  denotes the effective gear ratio, . It is further

assumed that the construction of the gearbox based mechanism is such
that the following geometric constraint is obtained from (2.139),

(2.140)

2.10 Definition of Generalized Co-Ordinates 

and Generalized Velocities 

The vector of generalized co-ordinates   and the vector of generalized

velocities   are given by

(2.141)

Thus, there are  generalized co-ordinates.

The geometric inequality constraints (2.105)–(2.106), (2.108),
(2.64), define an admissible region or set, , for the generalized co-

ordinates  of the mobile ADS as follows (Chap. 3)

(2.142)

Henceforward, only admissible motions of the mobile ADS that satisfy 
 for all  are considered. The velocity constraints on the

motion of the mobile ADS are discussed further in Chap. 3.



2.11 Inertial Azimuth and Elevation Angles of
a Vector
Consider an inertial vector  specified as follows

(2.143)

The magnitude or Euclidean norm of the vector  is denoted by 

and is given by

(2.144)

The inertial azimuth and elevation angles of  are denoted by  and 

, respectively, and are defined as follows ((2.107))

(2.145)

(2.146)

Thus, the inertial vector  is expressed in terms of  and  as

follows

(2.147)

The term inertial is used in conjunction with , , in order to

emphasize that , , are the azimuth and elevation angles of an

inertial vector . In order to simplify the presentation, , , are also

referred to as the azimuth and elevation angles of  or as the inertial



angles of . The angles , , are related to the spherical co-ordinates

of the vector  ([81, 179]).

2.12 Line-of-Sight Vector from the Mobile ADS
to the AAT
The line-of-sight (LOS) vector from the mobile ADS to the AAT, , is

defined as the inertial vector from the hinge point H of the AA gun
(Fig. 2.1) to the center of mass of the AAT and is given by

(2.148)

and where it is assumed that

(2.149)

and  is the inertial position of the center of mass of the AAT. Given

the following inertial trajectories of the AAT and of the hinge point H of
the mobile ADS ((2.73)–(2.78))

(2.150)

Then, by using (2.148), the following LOS vector trajectories are
computed

(2.151)

(2.152)



The inertial angles of the LOS vector are given by ((2.145), (2.146),
(2.148))

(2.153)

(2.154)

Given a trajectory , , and assume that a suitable scientific

computing system is used to compute the term  in

(2.153), and thus the trajectory of the azimuth angle ,  (see

command line help for the Maple function arctan, [16], and the
MATLAB function arctan2, [110, 112]). If at any time t the trajectory
of the actual azimuth angle of the LOS vector increases to a value just
greater than  or decreases to a value less than or equal to  then 

, (2.153), jumps to  or to , respectively. The afore-mentioned

wrapping of , , to the interval  is not desirable.

Smooth trajectories for the LOS inertial angles , , can be

obtained by numerically integrating the LOS inertial angular rates 
, . The steps of the procedure are as follows.

First, compute the first and second time derivatives of  and 

, (2.153), (2.154), (2.149), as follows

(2.155)



(2.156)

(2.157)

(2.158)

Second, compute the initial conditions , , by using

(2.153)–(2.154).
Third, solve numerically the differential equations describing the

motion of the mobile ADS and AAT, including (2.155), (2.156), for the
inertial angles of the LOS vector , , by employing, for

example, a fourth order Runge-Kutta algorithm with a fixed time-step.
Thus, , , are effectively obtained by using the following

equations

(2.159)

(2.160)



where the integrals are computed numerically and where the right-
hand-sides of (2.155), (2.156), are applied for , ,

respectively. Thus, smooth trajectories are obtained for , ,

and for , , , . For the mobile ADS application

considered here, the azimuth angle  computed from (2.159) will

not necessarily be limited to the interval , while the elevation

angle  computed from (2.160) will be limited to the interval 

 due to (2.149).

Consider the case where the vehicle body and wheels of the mobile
ADS are completely stationary. Then, it follows that the hinge point H is
stationary relative to the inertial reference frame, implying that 

 or . This leads to

simplifications in the expressions for the LOS vector and its time
derivatives, (2.148), (2.151), (2.152).

2.13 Aiming Vector of the AA Gun
The aiming vector of the AA gun is defined as the unit vector  of the

body reference frame  of the AA gun ((2.66)), and is expressed in

terms of the generalized co-ordinates , , , as follows

(2.161)

(2.162)



The aiming vector points in the direction from G to M and along the
longitudinal axis of the AA gun (Fig. 2.1). The inertial azimuth and
elevation angles of the AA gun aiming vector  are denoted by 

and , respectively, and are related to the generalized co-ordinates 

, , , and to the Euler angles , , of the AA gun as follows

((2.145)–(2.146))

(2.163)

(2.164)

The angles  and  will be referred to as the aiming angles of the

AA gun, or simply as the azimuth and elevation angles of the AA gun.
The angles  and  specify the inertial direction in which the AA

gun is aiming.
Thus, by using (2.162), (2.163), (2.164), the aiming vector of the AA

gun, , (2.161), is expressed in terms of the aiming angles, , 

, as follows

(2.165)



Note that the AA gun aiming angles , , are not computed by

using (2.161), (2.145), (2.146), but are obtained by using (2.163),
(2.164), and the given smooth trajectories of the angles , , .

Alternatively, if the AA gun aiming angles , , and the angle 

are given then the angles , , are computed by using (2.163), (2.164).

2.14 Inertial Position and Velocity of the AA
Gun Muzzle
The inertial position of the AA gun muzzle is given by (Sect. 2.5)

(2.166)

(2.167)

In addition, by using (2.73), (2.165),  is expressed in terms of the

inertial position of the hinge point H of the AA gun, , and the aiming

angles of the AA gun, as follows

(2.168)

where

(2.169)

In (2.167), the inertial position  is expressed as a function of the

generalized co-ordinates appearing on the right-hand-side of (2.167).



Thus, the inertial velocity  is obtained by computing directly the

time derivative of  as follows

(2.170)

(2.171)

The inertial velocity of the AA gun muzzle can also be obtained by using
the kinematic relations given in Appendix A as follows

(2.172)

For later use, the inertial velocity of the AA gun muzzle is expressed in
terms of the time derivative of the right-hand-side of (2.168), (2.169),
as follows

(2.173)

where

(2.174)
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This Chapter presents the kinematic model of the mobile ADS. The
kinematic model is derived by using all the velocity constraints and
describes the generalized velocities in terms of the selected
independent generalized velocities.

3.1 Velocity Constraints of the Mobile ADS
The geometric and velocity constraints are as follows.

1.
Four Geometric Constraints.

a.
Turret motor and gearbox based mechanism: one geometric
constraint (2. 128) obtained from the velocity constraint (2. 
127).

 

b.
AA gun motor and gearbox based mechanism: one geometric
constraint (2. 140) obtained from the velocity constraint (2. 
139).

 

c.
Front wheel steering system: two geometric constraints (2. 
103)–(2. 104).

 

 

https://doi.org/10.1007/978-3-030-55498-9_3


2. Thirteen Velocity Constraints.
The velocity constraints include the time derivatives of the two

geometric constraints (2. 103)–(2. 104) and are as follows.

a.
Wheels 1, 2, 3 and 4: eight velocity constraints (2. 43)–(2. 50).  

b.
Drive system and differential gearbox: one velocity constraint
(2. 91).

 
c.

Turret motor and gearbox based mechanism: one velocity
constraint (2. 127).

 
d.

AA gun motor and gearbox based mechanism: one velocity
constraint (2. 139).

 
e.

Front wheel steering system: two velocity constraints, (2. 115)–
(2. 116), obtained by differentiating with respect to time the
two geometric constraints (2. 103)–(2. 104).

 

 



Fig. 3.1 Schematic of the mobile air defence system

The following preliminary steps are applied in order to derive the
kinematic model of the mobile ADS (Fig. 3.1).

1. First, note that the eight velocity constraints (2. 43)–(2. 50) are not
independent. Up to seven independent velocity constraints can be
obtained from (2. 43)–(2. 50).

Second, substitute the geometric constraints (2. 103)–(2. 104)
into the velocity constraints (2. 43)–(2. 50).

In particular, substitute the relations (2. 112) in the expanded
form of the eight velocity constraints (2. 43)–(2. 50) (that is, the
trigonometric terms in (2. 47)–(2. 50) containing  and  are

expanded).

 



The resulting eight velocity constraints, denoted by (2. 43)–(2. 
50) (2. 112) in order to save space, are not independent. Up to six
independent velocity constraints can be obtained from (2. 43)–(2. 
50) (2. 112).

2.
The velocity constraints (2. 91), (2. 127), (2. 139), are independent
with respect to the velocity constraints (2. 43)–(2. 50) (2. 112).

 
3.

The velocity constraints (2. 115)–(2. 116) are independent with
respect to the velocity constraints (2. 43)–(2. 50) (2. 112).

 
4.

It follows that the kinematic model of the mobile ADS is based on a
total of thirteen velocity constraints, (2. 43)–(2. 50) (2. 112), (2. 
91), (2. 127), (2. 139), (2. 115)–(2. 116), that are not independent.

In particular, up to eleven independent velocity constraints can
be obtained from the above-mentioned thirteen velocity
constraints.

 

Thus, the thirteen velocity constraints (2. 43)–(2. 50) (2. 112), (2. 
91), (2. 127), (2. 139), (2. 115)–(2. 116), are represented as follows

(3.1)

where  is the velocity constraints matrix (  is not

given here in order to save space), and

(3.2)

(3.3)

((2. 141), (A.5), and (A.123)). Henceforward, the explicit functional
dependence on ,  and , is suppressed in order to simplify the

presentation. In addition, it is assumed throughout that , (2. 

142).
The rank of the velocity constraints matrix  is eleven,1



(3.4)

It follows that at least one set of eleven independent velocity
constraints can be found from the thirteen velocity constraints, (3.1).

Furthermore, by using the assumptions and derivations in
Appendix A, the matrix , (A.106), is , the matrix 

, (A.113), is , thus leading to a matrix , (A.119),

that is , . The selected generalized

co-ordinates , (2. 141), are such that the matrix  has full column

rank ((A.120)),

(3.5)

In this work all thirteen velocity constraints (3.1) are used in the
derivation of the kinematic and dynamic models of the mobile ADS
(Appendices A and B). However, for completeness, two different
methods are presented below for converting the thirteen velocity
constraints (3.1) to a set of eleven independent velocity constraints in
the following form

(3.6)

where , and Rank .

The first method employs a reduction procedure as follows. Apply
elementary row operations ([126]) in order to transform the original
velocity constraints (3.1) to an equivalent system of velocity constraints
given by

(3.7)

where the matrix  is in reduced row echelon form,

(3.8)



and where ,  Rank ,  ,  

,  ,

(3.9)

 denotes the 9 by 9 unit matrix,

(3.10)

(3.11)

subject to

(3.12)

Given that the system motion satisfies , (2. 142), it follows that

(2. 105)–(2. 106), and (2. 108), are satisfied thus implying that 
, while . Thus, conditions (3.12) are met.



From (3.8), it can be seen that the last two rows of the matrix 

are zero-rows, indicating that there are two redundant velocity
constraints out of the thirteen velocity constraints, (3.1). Thus, a set of
eleven independent velocity constraints is obtained directly from (3.7),
(3.8), and represented as follows

(3.13)

The second method employs deletion of the dependent or redundant
velocity constraints as follows. Given that up to six independent
velocity constraints can be obtained from the eight velocity constraints
(2. 43)–(2. 50) (2. 112). One possible combination of six independent
velocity constraints is ((2. 43)–(2. 45), (2. 47)–(2. 49)) (2. 112). These
six velocity constraints, together with the five independent velocity
constraints (2. 91), (2. 127), (2. 139), (2. 115)–(2. 116), lead to eleven
independent velocity constraints represented as follows

(3.14)

, Rank .

3.2 Kinematic Model of the Mobile ADS
Hereafter, the kinematic model of the mobile ADS is derived by using all
the velocity constraints (3.1). Firstly, note that the relation between the
dimension of the null space of , , and  is given by

(Theorem 31, p. 281, [126]),

(3.15)

Given that , (3.4), and using (3.15), it follows that

(3.16)



Let  denote the vector of independent generalized velocities, 

, , (3.16) (Appendix A). In this case, the elements of 

are set equal to the following generalized velocities,

(3.17)

(3.18)

where , and ((A.132))

(3.19)

The associated vector of independent generalized co-ordinates   is

obtained from (3.17) as follows

(3.20)

The generalized co-ordinates , , are actuated by the applied

torques , , respectively. In addition, the generalized co-ordinates 

, , are linearly related via the respective gearbox based mechanism

ratios to the generalized co-ordinates , , that are actuated by the

applied torques , , respectively.

Equations (3.1) and (3.18), are solved jointly for  in terms of ,

and the solution is expressed as follows ([65] and Sect. B.3.1),



(3.21)

where  is the null space matrix given by

(3.22)

subject to

(3.23)

Given that the system motion satisfies , (2. 142), it follows that

(2. 105)–(2. 106), and (2. 108), are satisfied thus implying that 
, and , , (2. 114), while . Thus,

conditions (3.23) are met.
By using (3.16) it follows that the matrix  has full column rank,

(3.24)



In addition, by substituting the expression for , (3.21)–(3.22), in (3.1),

(3.7), (3.13), and (3.14), and simplifying, the following is obtained

(3.25)

It follows from (3.25) that the expression for , (3.21), (3.22), solves

the homogeneous equation representing the original velocity
constraints that are not independent, (3.1), as well as homogeneous
equations representing the sets of converted velocity constraints that
are independent, (3.13), (3.14) ([65]).

Chapter 4 deals with the dynamic model of the mobile ADS, and
partitions the vector of generalized co-ordinates , (2. 141), into the

vector of independent generalized co-ordinates , (3.20), and the

following vectors of dependent generalized co-ordinates,

(3.26)

Each generalized co-ordinate in  can be computed directly in terms

of the independent generalized co-ordinates in , by using the

geometric constraints (2. 104), (2. 103), (2. 128), (2. 140). In addition,
note that the matrix , (3.22).

Thus, the kinematic model of the mobile ADS dealt with here is
given by (3.21)–(3.22). The mathematical form of the null space matrix 

, (3.22), is generally different for each particular choice of the vector

of independent generalized velocities , (3.17). This implies that the

form of the kinematic model is not unique ([82]).
For later use, the following relation is obtained by computing the

time derivative of both sides of (3.21) as follows
(3.27)



In this work, the scientific computing systems Maple ([16, 186]) and
MATLAB/MATLAB Symbolic Toolbox ([110, 112]) are used to do the
symbolic computations and manipulations (as well as other systems
such as Mathematica, [183], Maxima, [114, 138], Octave/Octave
Symbolic Package, [133]; see also [123]). The MATLAB Symbolic
Toolbox 2007b ([112]) uses Maple internally to do the symbolic
computations. The above-mentioned systems have the required
functions to compute the rank of the symbolic matrix , (3.1), (3.4);

the rank of the symbolic matrix , (3.5); the rank of the symbolic

matrix , (3.13); the rank of the symbolic matrix , (3.14); the null

space of , (3.1), (3.18), that is, effectively the matrix , (3.21), (3.22);

and the reduced row echelon form of , that is, the matrix , (3.7),

(3.8) (Maple also obtains some provisos or conditions for the above
computations, [33, 91]).

3.3 Decoupled Kinematic Models of the
Vehicle System and of the Turret and AA Gun
System
The matrix  in the kinematic model of the mobile ADS, (3.21)–(3.22),

is expressed in terms of matrices  and  as follows

(3.28)

(3.29)



where ,  is a constant matrix, and

where MATLAB/Octave style syntax is used in (3.29) to represent the
selection of rows and columns of the matrix  in defining the matrices 

 and  ([43, 110]).

Thus, by using (3.28), the kinematic model of the mobile ADS,
(3.21), is represented as two decoupled kinematic models. In order to
simplify the presentation, the first kinematic model is referred to as the
kinematic model of the vehicle system consisting of the vehicle body, the
wheels and the steering and drive systems. The second kinematic
model is referred to as the kinematic model of the turret and AA gun
system consisting of the turret, the AA gun, and the drive systems for
the turret and AA gun. The above-mentioned kinematic models are
represented as follows

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

where



(3.35)

(3.36)

(3.37)

(3.38)

where

(3.39)

(3.40)

The vectors , , (2. 141), and , , (3.20), are partitioned in terms

of the relevant vector quantities given in (3.30)–(3.40) as follows

(3.41)

The initial conditions  and  are

partitioned according to (3.41) as follows
(3.42)



1

Footnotes
At the end of Sect. 3.2, a brief summary is given of the symbolic computing software used to

obtain some of the results in this work.
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4. Dynamic Model and Nonlinear
Control of the Mobile Air Defence
System
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Electrical Engineer working in Decision and Control, Pretoria,
South Africa

 

This Chapter deals with the dynamic model and nonlinear control of
the mobile ADS as follows.

1.
Application of the Lagrange equations (Appendix B) in order to
derive the basic dynamic model of the mobile ADS.

 
2.

Application of the kinematic model in order to derive the reduced
dynamic model of the mobile ADS.

 
3.

The reduced dynamic model is employed in order to derive a
nonlinear feedback control law for the ADS using inverse dynamics
transformations.

 

4.
Analysis of the zero dynamics of the controlled dynamic model of
the mobile ADS.

 
5.

Methodology for the computation of the constrained motion of the
controlled dynamic model of the mobile ADS satisfying all the
holonomic and nonholonomic velocity constraints.

 

6. Methodology for the computation of the vector of generalized

https://doi.org/10.1007/978-3-030-55498-9_4


constraint forces and the vector of Lagrange multipliers.
 

4.1 Basic Dynamic Model of the Mobile ADS
The Lagrange equations are extended in Appendix B for the case of
constrained rigid multibody systems subject to velocity constraints that
may not be independent. The Lagrange equations employ the total
kinetic energy  and total potential energy  of the multibody

system. For the case of the mobile ADS,  and  are given by

(4.1)

where , , , are obtained from (B.22), (B.20). Note

that it is assumed throughout that , (2. 142).

By employing the expressions for , , and applying the

Lagrange equations, (B.53)–(B.54), (B.57), the following basic dynamic
model of the mobile ADS is obtained,

(4.2)

where  is the mass matrix, , , 

,  is the vector of generalized applied

forces, and  is the vector of generalized constraint forces

(Appendix B).
The vector of generalized applied forces     is

given by

(4.3)



where , , , , are generalized applied forces having

units of torque (Nm) and are equal to the applied torques , , ,

, respectively ((2. 141)).

The vector of generalized constraint forces    

is given by ((B.57))

(4.4)

where  is the vector of Langrange multipliers, and  is the

velocity constraints matrix, (3. 1). The term generalized applied force or
generalized constraint force is used to refer to quantities having units
of force or torque.



Fig. 4.1 Schematic of the mobile air defence system

The vector of generalized gravitational forces  

, (B.35), is given by

(4.5)

The element    in (4. 5) represents a torque

acting about the hinge point H of the AA gun due to the gravitational



force acting at the center of mass of the AA gun (point G in Fig. 4.1). The
vector  is part of the vector , (4. 2).

The nonzero elements of , , are given

below (lengthy expressions are not given in order to save space and are
indicated by three stars )

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

The nonzero elements of  are given below (lengthy

expressions are not given in order to save space and are indicated by
three stars )

(4.25)

(4.26)



With reference to the vector of Lagrange multipliers ,

each Lagrange multiplier , , is associated with the

corresponding velocity constraint in (3. 1) as follows.

1.
, , are associated with the eight velocity constraints,

(2. 43)–(2. 50)  (2. 112), respectively.

 

2.
 is associated with (2. 91).  

3.
 is associated with (2. 127).  

4.
 is associated with (2. 139).  

5.
 is associated with (2. 115).  

6.
 is associated with (2. 116).  

In [63, 64], by using the d’Alembert principle ([81]), the Newton-
Euler equations are extended for the case of constrained rigid
multibody systems subject to velocity constraints that may not be
independent. The Newton-Euler equations are applied to the mobile
ADS and the following basic dynamic model is obtained

(4.27)

and where it is verified that  ((4. 6)–(4. 24)), 

 ((4. 25)–(4. 26), (4. 5)). Thus, the basic dynamic

model of the mobile ADS, (4. 2), (4. 4), obtained by using the Lagrange
equations (Appendix B) is identical to the basic dynamic model, (4. 27),
obtained by applying the Newton-Euler equations ([63, 64]).



By using (4. 2)–(4. 3), (4. 4), the basic dynamic model of the mobile
ADS is expressed as follows

(4.28)

where

(4.29)

and  is the vector of applied torques also referred to as the vector of

control inputs. There are four control inputs, , (B.11), that are

used to control the motion of the mobile ADS.
By using (4. 28)–(4. 29), (4. 4), the detailed equations describing the

basic dynamic model of the mobile ADS are given by

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)



(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)



where  denotes a row vector containing the elements of row

three of the mass matrix  . The generalized constraint force  is

equal to the sum of several terms as follows ((4. 4))

(4.45)

, , , (3. 1). By using (4. 4), (3. 1),

the generalized constraint forces are given by

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)



(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

4.2 Reduced Dynamic Model of the Mobile ADS
The reduced dynamic model of the mobile ADS is derived as follows.
The independent generalized co-ordinates and velocities  and  are

given by

(4.61)

Thus, for the mobile ADS it holds that  ((B.11)).

Differentiate with respect to time both sides of (3. 21), yielding

(4.62)

Then, insert the expression for , (4. 62), in (4. 28) and multiply

both sides of the resulting equation from the left by  to obtain the

following
(4.63)



From (3. 25) it follows that

Thus, Eq. 4. 63 simplifies to the reduced dynamic model of the mobile
ADS in terms of ,

(4.64)

where

(4.65)

(4.66)

, , . Using (4. 65), (4. 

66), and the mathematical forms of , , , , and , the

matrices ,  and , are computed analytically and/or

numerically.
Given that the mass matrix   is symmetric and positive definite.

Furthermore, given that the matrix  has full column rank, that is, 

, (3. 24). Then, it follows that the matrix  is

also symmetric and positive definite, that is,

(4.67)



(Theorem 14.2.9, p. 213, [80], and Theorem 4.2.1, p. 140, [71]). One of
the main advantages of the reduced dynamic model (4. 64)–(4. 66), is
that the vector of Lagrange multipliers  does not appear there.

Thus, the reduced dynamic model of the mobile ADS considered
here is given by Eqs. (4. 64)–(4. 66). As mentioned previously, the null
space matrix  generally depends on the selected vector of

independent generalized velocities  , (3. 17). This implies that the

reduced dynamic model of the mobile ADS is not unique in form ([82]).

4.3 Nonlinear Feedback Control of the
Reduced Dynamic Model of the Mobile ADS
A methodology is presented for deriving a nonlinear feedback control
law for the vector of applied torques   appearing in the reduced

dynamic model of the mobile ADS, (4. 64),

(4.68)

where the array  of feedback variables is defined later. The control

objective is that the following four variables should asymptotically
track specified reference trajectories.

1.
The steering system azimuth angle relative to the vehicle body, 

, .
 

2.
The drive system rotational velocity relative to the vehicle body, 

, .
 

3.
The turret azimuth angle relative to the vehicle body, , .  

4.
The AA gun elevation angle relative to the turret, , .  



In particular, let , , , be vectors that group the four

variables of the mobile ADS and their time derivatives as follows

(4.69)

(4.70)

Let , , denote the vector reference trajectory for , 

, ,

(4.71)

(4.72)

Thus, the nonlinear feedback control law should ensure that , 

, asymptotically tracks the reference trajectory , , 

, as follows,

(4.73)

First, define the following inverse dynamics transformation for the
reduced dynamic model of the mobile ADS, (4. 64) ([35, 99, 124, 153,



167])

(4.74)

where . By inserting (4. 74) in (4. 64), the following equation is

obtained,

(4.75)

Second, the functions , ,  and  are specified as follows

(4.76)

(4.77)

(4.78)

(4.79)

where the constants , , , and , are chosen such

that the following polynomials in s are Hurwitz ([35, 99, 124, 153,
167])

(4.80)

(4.81)



Then, it follows from (4. 75)–(4. 79) that ([35, 99, 124, 153, 167])

(4.82)

(4.83)

(4.84)

(4.85)

Third, the required applied torques , , , , are computed

from (4. 74). Thus, the nonlinear feedback control law for the vector of
applied torques, (4. 68), employs the array of feedback variables  ,

(4.86)

where , , , 

. The derived nonlinear feedback control law is valid for

all motions of the mobile ADS that satisfy , (2. 142).

4.3.1 Analysis of the Zero Dynamics
The analysis of the zero dynamics involves the kinematic and reduced
dynamic models of the mobile ADS as used in the derivation of the
nonlinear feedback control law ((4. 74) and Sect. 4.3), and follows the
methodology described on pp. 280–289, [109].



The relevant equations are obtained from Chap. 3, and Sects. 4.2 and
4.3, and are repeated here for convenience as follows

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

The input of the reduced dynamic model of the mobile ADS is , (4. 

89), while the output is denoted by  and is given by (Sect. 4.3)

(4.93)

Thus, the zero dynamics will be determined with respect to the input 
 and the output . The specific methodology described on pp. 285–

286, [109] is applied in the following steps.
First, given that the output  is set equal to , (4. 93). Then the

following relations are obtained from (4. 87), (4. 90), (4. 92), (4. 93),

(4.94)



(4.95)

(4.96)

Second, the input  is computed from (4. 89) as follows

(4.97)

The form of  in (4. 97) is identical to the nonlinear feedback control

law (4. 74) with . By substituting , (4. 96), in (4. 25)–

(4. 26), the expression for  simplifies to the following ((4. 5))

(4.98)

In addition, by substituting , (4. 95), and  in (4. 65)

it follows that

(4.99)

Thus, the input , (4. 97), is given by

(4.100)

The vector of applied torques , (4. 100), perfectly counteracts the

generalized gravitational force , (4. 5), that is,  in (4. 

89), thus ensuring that the AA gun remains completely stationary. By
using (4. 96) and (4. 91) it follows that

(4.101)



From (4. 94), (4. 101), it follows that

(4.102)

Let the vector  consist of the first nine and the last two generalized

co-ordinates in , (2. 141),  consists of the remaining four

generalized co-ordinates , , , , (4. 87), and let .

Third, it follows from the above and (4. 101) that the zero dynamics
are given by

(4.103)

Thus, the zero dynamics are neutrally stable since the mobile ADS
remains stationary and retains its initial position and orientation for all
time, that is,

(4.104)

More general methods for the investigation of the zero dynamics are
given in Chaps. 3 and 4, [154], Chap. 6, [88, 99].

4.4 Constrained Motion of the Controlled
Dynamic Model of the Mobile ADS
The constrained motion of the controlled dynamic model of the mobile
ADS that satisfies the geometric constraints (2. 103)–(2. 104), (2. 128),
(2. 140), and the velocity constraints (3. 1), is computed over a finite
time horizon ,

(4.105)

by applying the reduced dynamic model (4. 64)–(4. 66) as follows.

1. Given the initial conditions for , , (2. 142),  



satisfying the geometric constraints (2. 103)–(2. 104), (2. 128), (2. 
140), and given the initial conditions for , , it

follows that

(4.106)

where  satisfies the velocity constraints (3. 1).

2.
Given the vectors of reference trajectories ,

(4.71), (4.72).

 

3. Solve the following Eqs. ((4. 74)–(4. 79), (4. 64)–(4. 66), (3. 17)–(3. 
21), (3. 26)) jointly for , , , , , , for all , in

cases where the solution exists and is unique,

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

 



(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)

4.
In addition, using , , , , and (4. 62), compute the vector

of the generalized accelerations  as follows

(4.123)

 

5. In summary, the constrained motion of the controlled dynamic
model of the mobile ADS consists of the following computed
trajectories

 



(4.124)

and satisfies the geometric constraints (2. 103)–(2. 104), (2. 128), (2. 
140), and the velocity constraints (3. 1).

Equations (4. 107)–(4. 122) are based on the kinematic and dynamic
models of the mobile ADS as derived from the Lagrange equations, and
on the nonlinear feedback control law. The complete system of
equations is solved jointly subject to given initial conditions. Hence, the
computed solution (4. 124) is the predicted motion trajectory of the
actual controlled mobile ADS.

4.5 Generalized Constraint Forces
The vector of generalized constraint forces  is computed as follows

(Appendix B). Using (4. 4), (4. 28), the vector of generalized constraint
forces  is given by

(4.125)

By substituting the constrained motion of the controlled dynamic
model of the mobile ADS, (4. 124), and the computed vector of applied
torques , (4. 119), in the expression on the right-hand-side of (4. 

125), a unique vector of generalized constraint forces  is obtained.

4.6 Lagrange Multipliers
The vector of Lagrange multipliers  is computed as follows

(Appendix B). Given the constrained motion of the controlled dynamic
model of the mobile ADS, (4. 124), and the resulting vector of



generalized constraint forces  computed by using (4. 125).

Substitute (4. 124) and  in (4. 4), and re-arrange Eq. (4. 4) as follows

(4.126)

The vector of Lagrange multipliers  that satisfies Eq. (4. 126) is not

unique since the velocity constraints (3. 1) are not independent, 
. The exact solution of (4. 126) that has minimum

Euclidean norm is given by (Appendix B, Case P4)

(4.127)

where  denotes the Moore-Penrose generalized

inverse of the matrix , and  where  is any given exact

solution of (4. 126).
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This Chapter deals with the operational modes of the mobile ADS. The
operational modes consist of various combinations of the tracking
modes of the vehicle body and of the AA gun. The afore-mentioned
tracking modes are based on the nonlinear feedback control law
developed in Chap. 4. In addition, some results based on the firing rate
of the AA gun are presented.

5.1 Asymptotic Tracking Results
The reference trajectories for , , , for , and for , ,

are denoted as follows (Chap. 4)

(5.1)

(5.2)

(5.3)

https://doi.org/10.1007/978-3-030-55498-9_5


(5.4)

(5.5)

(5.6)

(5.7)

In Chap. 4 a nonlinear feedback control law is derived for the mobile
ADS such that the following asymptotic tracking results are obtained
((4. 82)–(4. 85)),

(5.8)

(5.9)

(5.10)

With reference to (5.1)–(5.10) and the kinematic model of the vehicle
system, (3. 33)–(3. 36), the asymptotic tracking results for the variables
related to the motion of the vehicle body are as follows

(5.11)



(5.12)

(5.13)

With reference to (5.1)–(5.10) and the kinematic model of the turret
and AA gun system, (3. 37)–(3. 40), the asymptotic tracking results for
the variables related to the motion of the turret and the AA gun are as
follows

(5.14)

(5.15)

(5.16)

Given the initial conditions ((3. 41), (3. 42))

(5.17)

Then, the following holds.
Firstly, for the case of the variables related to the motion of the

vehicle body, consider the relevant reference trajectories from (5.1)–
(5.7). The resulting closed-loop trajectories of the independent
generalized co-ordinates, velocities and accelerations, , , 

, , are computed via (3. 36), (4. 75)–(4. 79) (Chap. 4).

Furthermore, the resulting motion trajectories of the vehicle system, 
, , , , are computed via (3. 33)–(3. 35), (5.17).

Secondly, for the case of the variables related to the motion of the
turret and the AA gun, consider the relevant reference trajectories from
(5.1)–(5.7). The resulting closed-loop trajectories of the independent



generalized co-ordinates, velocities and accelerations, , , 

, , are computed via (3. 40), (4. 75)–(4. 79) (Chap. 4).

Furthermore, the resulting motion trajectories of the turret and AA gun
system, , , , , are computed via (3. 37)–(3. 39),

(5.17). The rotation of the turret in azimuth relative to the vehicle body
rotates the AA gun in azimuth relative to the vehicle body.

Thus, control of the vehicle body and of the AA gun is obtained as
follows.

1.
If proper reference trajectories , , together

with the relevant first and second order time derivatives, , are

specified then maneuvering control of the vehicle body in a plane
parallel to the inertial (X, Y) plane is obtained.

 

2.
If proper reference trajectories , , together with their

first and second order time derivatives, , are specified then

directional control of the AA gun aiming vector relative to the
vehicle body is obtained.

 

By using the above-mentioned asymptotic tracking results, various
tracking modes of the vehicle body and of the AA gun are considered
and the required reference trajectories, (5.1)–(5.7), are presented in
each case.

In addition, given the kinematic model of the mobile ADS, (3. 21), or
equivalently the decoupled kinematic models of the vehicle system, (3. 
33)–(3. 36), and of the turret and AA gun system, (3. 37)–(3. 40), and the
reference trajectories (5.1)–(5.7). Then, the asymptotic tracking results
(5.8)–(5.16) and the kinematic model of the mobile ADS are used to
compute steady state values of some elements of the vector of
generalized velocities  and the vector of generalized co-ordinates .



5.2 Vehicle Body Tracking Mode VM1: Vehicle
Body is Maneuvering
In this configuration, the vehicle body of the mobile ADS is both
translating and rotating relative to the inertial reference frame. It is
assumed that the reference trajectories  and , and the

relevant first and second order time derivatives are chosen such that
the vehicle body is performing the desired maneuver. In the sequel, a
particular steady state motion trajectory for the vehicle body is
considered.

5.3 Vehicle Body Tracking Mode VM1A:
Vehicle Body is Moving in a Straight Line
It is assumed that the vehicle body is in steady state motion. In
particular, the vehicle body is not rotating relative to the inertial
reference frame and its center of mass is moving forward at a constant
speed  and in a straight line that coincides with the  axis (with

direction the unit vector , Fig. 5.1).



Fig. 5.1 Schematic of the mobile air defence system

It follows from (3. 33)–(3. 36), (5.8)–(5.16), that the reference
trajectories for this case are given by

(5.18)

and the resulting values for the relevant variables are given by

(5.19)

where  is a given real number, and

(5.20)



(5.21)

(5.22)

5.4 Vehicle Body Tracking Mode VM2: Vehicle
Body is Stationary
In this configuration, the wheels and vehicle body are in a stationary
steady state relative to the inertial reference frame. It follows from (3. 
33)–(3. 36), (5.8)–(5.16), that the reference trajectories are given by

(5.23)

and that

(5.24)

(5.25)

(5.26)

5.5 AA Gun Tracking Mode GM1: AA Gun is
Rotating Relative to the Vehicle Body
The AA gun is rotating relative to the vehicle body if it is rotating in
elevation relative to the turret and/or if the turret is rotating in azimuth
relative to the vehicle body. The reference trajectories  and 

, and their higher order time derivatives are required for the

directional control of the AA gun relative to the vehicle body and are
determined as follows.



Given reference trajectories of the AA gun aiming angles,

(5.27)

(5.28)

and the trajectories of the mobile ADS angle  (Fig. 5.1),

(5.29)

It follows that the required reference values for the turret azimuth
angle, , the AA gun elevation angle, , and their higher

order time derivatives, are computed at each time t by using (2. 163)–
(2. 164) as follows,

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

5.6 AA Gun Tracking Mode GM1A: AA Gun
Aiming Vector is Tracking the LOS Vector
In this case, the aiming vector of the AA gun should asymptotically
track the LOS vector. For the given configuration of the mobile ADS it
follows that the aiming vector of the AA gun should asymptotically



become parallel with the LOS vector. Conceptually, both of these vectors
point from point H outwards in certain directions (Fig. 5.1). Note that
during the initial stage of engaging an AAT it is generally required that
the AA gun should be tracking the center of mass of the AAT, that is, the
LOS vector.

Practically, the above means that the reference values for the AA gun
aiming angles , , and their time derivatives in

(5.27)–(5.28), are set equal to the inertial angles of the LOS vector, 
, , and their time derivatives, (2. 155)–(2. 160), as follows

(5.36)

(5.37)

Consider the case of an AA laser gun that is tracking the LOS vector. It is
assumed that the laser beam travels close to the speed of light in
vacuum (  m/s) and in a straight line. In addition, assume a set

of engagement scenarios where the AAT velocities and AAT distances to
point H of the mobile ADS are such that the center of mass of the AAT
moves less than 1 cm over the time of travel of the laser beam to the
AAT. Thus, if the AA laser gun is tracking the LOS vector and the laser
beam is activated then it will intercept the AAT within a distance of
approximately 1 cm from its center of mass (and ignoring the body of
the AAT).

5.7 AA Gun Tracking Mode GM1B: AA Gun
Aiming Vector is Tracking the Fire Control



Vector
However, for the case of an AA gun firing a projectile with a finite initial
velocity as considered here, the AA gun aiming vector must actually
track the fire control vector. The fire control vector is calculated by
solving a relevant fire control problem.1

5.8 AA Gun Tracking Mode GM2: AA Gun is not
Rotating Relative to the Vehicle Body
In this configuration, the AA gun is not rotating relative to the vehicle
body. That is, the turret and the AA gun are in a stationary steady state
relative to the vehicle body. It follows from (3. 37)–(3. 40), (5.8)–(5.16),
that the reference trajectories are given by

(5.38)

where ,  are given real numbers, and

(5.39)

5.9 Main Operational Modes of the Mobile ADS
The main operational modes of the mobile ADS are summarized in
Table 5.1 and are defined by considering various combinations of
tracking modes of the vehicle body and of the AA gun.

Table 5.1 Table of the main operational modes of the mobile ADS

  AA gun is not rotating
relative to vehicle body
(GM2)

AA gun is rotating
relative to vehicle body
(GM1)

Vehicle body is stationary relative
to inertial reference frame (VM2)

OM3 OM2

Vehicle body is moving in a
straight line (VM1A)

OM1B OM1A



5.10 Operational Mode OM1: Mobile ADS is
Maneuvering
In this configuration, the vehicle body is in tracking mode VM1 and the
AA gun is in any tracking mode. Two subsidiary operational modes that
are of interest are OM1A and OM1B and are described next.

5.11 Operational Mode OM1A: Vehicle Body is
Moving in a Straight Line (VM1A) and the AA
Gun is Rotating Relative to the Vehicle Body
(GM1)
The vehicle body is in tracking mode VM1A leading to (5.18)–(5.22),
and the AA gun is in tracking mode GM1 leading to (5.27)–(5.35). In
this case, the inertial velocity of the AA gun muzzle, (2. 172), simplifies
to the following

(5.40)

5.12 Operational Mode OM1B: Vehicle Body is
Moving in a Straight Line (VM1A) and the AA
Gun is not Rotating Relative to the Vehicle
Body (GM2)
The vehicle body is in tracking mode VM1A leading to (5.18)–(5.22),
and the AA gun is in tracking mode GM2 leading to (5.38)–(5.39). Thus,
based on the above, and using (3. 33)–(3. 36), (5.8)–(5.16), it follows
that

(5.41)



(5.42)

In this case, the inertial velocity of the AA gun muzzle, (5.40), further
simplifies to the following

(5.43)

5.13 Operational Mode OM2: Vehicle Body is
Stationary (VM2) and the AA Gun is Rotating
Relative to the Vehicle Body (GM1)
In this configuration, the vehicle body is in tracking mode VM2 leading
to (5.23)–(5.26), and the AA gun is in tracking mode GM1. For this case,
the inertial velocity of the AA gun muzzle, (2. 172), simplifies to the
following

(5.44)

5.14 Operational Mode OM3: Vehicle Body is
Stationary (VM2) and the AA Gun is not
Rotating Relative to the Vehicle Body (GM2)
In this configuration, all bodies comprising the mobile ADS are
completely stationary relative to the inertial reference frame. Thus, the
vehicle body is in tracking mode VM2 leading to (5.23)–(5.26), and the
AA gun is in tracking mode GM2 leading to (5.38)–(5.39). In this case,
the inertial velocity of the AA gun muzzle, (2. 172), simplifies to the
following

(5.45)



5.15 Firing Rate of the AA Gun and Firing
Times of the AA Projectiles
The following simplifying assumptions are made with regard to the
firing of AA projectiles.

1.
The firing of the AA projectile generates significant forces on the
AA gun that generally disturb the motion of the mobile ADS. These
effects are not taken into consideration in the present work.

 

2.
If the firing button of the mobile ADS is pressed at any given time 

 then the AA gun fires the first projectile instantaneously at

time .

 

3.
It is assumed that at the time of release of the firing button, the AA
gun immediately stops firing. Thus, no AA projectile is fired at the
time of release of the firing button.

 

4.
It is further assumed that the center of mass of the projectile moves
in zero time from the breach of the AA gun to the AA gun muzzle.

 
5.

The motion of the AA gun muzzle directly influences the inertial
velocity of the AA projectile at the firing time (Chap. 6).

 
6.

If the AA gun fires then it fires at the maximum firing rate denoted
by ,

(5.46)

Thus, the time period between the firing of consecutive AA
projectiles is

(5.47)

 

7. In order to prevent overheating of the AA gun barrel and maximize
its operational lifespan, the AA gun cannot be fired continuously for



p p , g y
more than  seconds followed by a suitable time period of no

firing,
(5.48)

 

8.
The number of projectiles that the AA gun fires over a time period
of length  is denoted by  and is given by the following

((5.46), (5.48))

(5.49)

where

(5.50)

 

Given that the firing button is pressed at time  and released at

time  where

(5.51)

Then, the AA gun immediately stops firing at time .

Furthermore, the number of projectiles fired by the AA gun during the
time interval  is given by

(5.52)

It follows that the sequence of firing times of the  projectiles, 

, are given by

(5.53)



1

(5.54)

Assume that it is given that the AA gun must fire a burst of 

projectiles starting at a given time , . Then, the

firing button must be released at time , where  is computed

by using (5.52), (5.50), as follows

(5.55)

where the saturation function sat is defined as follows

(5.56)

, , , . The time  is added in (5.55) in

order to (conservatively) ensure that the resulting , (5.55), produces

the specified  via (5.52), that is, .

Footnotes
A conceptual fire control problem is formulated and solved numerically in Chap. 7.
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This Chapter deals with the point mass flight dynamics model of the AA
projectile ([79, 115]) as follows.

1.
The AA projectile is considered to be a point mass and the flight
dynamics model describes the inertial motion of the point mass
([79, 115]). Thus, the rotational motion of the actual AA projectile
is not considered.

 

2.
The differential equations of the point mass flight dynamics model
together with the specified initial condition define an initial value
problem. The final time of the initial value problem is equal to the
ground impact time ([44, 119]).

 

3.
The AA gun fires a single projectile at a sequence of increasing
elevation angles and at a fixed azimuth angle. The case of zero wind
velocity and the case of a given cross wind velocity are considered.

 

4.
In all cases, the trajectory of the AA projectile is computed by
solving numerically the initial value problem using a fourth order
Runge-Kutta algorithm with a fixed time-step ([44]).

 

https://doi.org/10.1007/978-3-030-55498-9_6


Fig. 6.1 Schematic of the mobile air defence system

6.1 Inertial Position and Velocity of the AA
Projectile
The point mass flight dynamics model of the AA projectile is based on
the following assumptions and methods.

1. The following group of assumptions holds.

a.
The earth is spherical and is not rotating ([12]).  

b.
The motions of the mobile ADS and AA projectile take place
on and just above a small area on the surface of the earth.

 

 



c. The above-mentioned small area on the surface of the earth is
considered to be locally flat.  

d.
The origin of the inertial co-ordinate system is fixed on the
slocally flat surface of the earth (Appendix B).

 
2.

The actual AA projectile is a symmetrical solid body of revolution
having cylindrical shape with an ogive-like front end ([24, 78, 116,
122, 180]). The symmetry axis is the longitudinal axis and the
projectile is spin-stabilized.

 

3.
In this work, the AA projectile is considered to be a point mass. A
flight dynamics model is used to describe the inertial motion of
the point mass ([46, 79, 115, 116, 169]). Thus, the rotational
motion is not considered. The point mass flight dynamics model
consists of a set of nonlinear differential equations that include
the gravitational force, the aerodynamic drag force and the effect
of a wind velocity ([115]). In the sequel, the term AA projectile
refers to a point mass.

 

4. The inertial position  and the inertial velocity  of

the AA projectile (Chap. 2) are denoted as follows

(6.1)

(6.2)

where  denotes the firing time,  denotes the ground

impact time (where the ground is represented by the inertial
(X, Y) plane). The ground impact time  is defined in terms of

an event as follows ([77, 120])

(6.3)

 



where
(6.4)

The fired AA projectile will impact the ground in a finite time
implying that the set  is not empty. Hereafter, it is assumed

that time , unless otherwise stated.

5.
The time of flight to ground impact, , is defined as follows

(6.5)

 

6.
It is assumed that the AA projectile moves in zero time from the
breach of the AA gun to the AA gun muzzle (Fig. 6.1).

 
7. Given the above assumption, the inertial position of the AA

projectile at the firing time  coincides with the inertial

position of the AA gun muzzle ((2. 168))

(6.6)

(6.7)

where

(6.8)

(6.9)

 



8.

The generic firing velocity of the AA projectile at time , 

, is defined as follows

(6.10)

where  is referred to as the generic firing speed.

 

9. It is assumed that the inertial velocity of the AA projectile at the
firing time  , , is equal to the vector sum of the

generic firing velocity, , and the inertial velocity of the AA

gun muzzle, as follows

(6.11)

where

(6.12)

(6.13)

 



(6.14)

10.

It follows from (6.12), (6.10), (5. 45), that if the mobile ADS is
completely stationary (operational mode OM3) then  is

given by

(6.15)

 

11.
It is assumed that there is a wind acting on the AA projectile. The
wind velocity, , is generally a function of time t and of the

inertial position  ([46]),

(6.16)

However, in this work it is assumed that for the time horizon
under consideration, the wind velocity, , is a constant vector

([46]).

 

12.
The inertial velocity of the AA projectile relative to the wind, 

, also referred to as the relative velocity, is defined as

follows ([46])

(6.17)

 

13. Let  denote a unit vector in the direction of , and

given by

 



(6.18)

where  is referred to as the relative speed of the AA

projectile.
14.

The Mach number of the relative speed is given by

(6.19)

where  denotes the speed of sound computed by using

the International Standard Atmosphere (ISA) model, and is a
function of several variables at time t, including the altitude, 

 ([46, 113, 116, 169]).

 

15.
In this Chapter, the presentation of the material and the
computation of the AA projectile trajectories are simplified by
setting the firing time  equal to a fixed value for all AA

projectiles fired by the AA gun.

 

6.2 Point Mass Flight Dynamics Model of the
AA Projectile
By applying Newton’s second law ([5, 10, 12, 13, 70, 75, 81]), the point
mass flight dynamics model describing the inertial motion of the AA
projectile is given by ([79, 115])

(6.20)



where the following holds.

1.
 is the mass.  

2.
 is the resultant aerodynamic force.  

3.
 is the gravitational force and is given by (Appendix B)

(6.21)

where g denotes the gravitational acceleration,  9.81 m/s .

 

Henceforth, in order to simplify the presentation the explicit
functional dependence on time t is mostly suppressed. It is assumed
that the resultant aerodynamic force  in (6.20) consists of an

aerodynamic drag force   acting in a direction that is opposite to

the relative velocity  and is given by ([24, 46, 115, 116])

(6.22)

where the following holds.

1.



 is the drag coefficient and is a nonlinear function of 

, (6.19), and thus of the relative speed  and of

the speed of sound  ([24, 116]),

(6.23)

 

2.
 denotes the air-density computed using the ISA model ([113]).  

3.
 is a reference area assumed to be given by  where 

is the radius of the AA projectile.

 

The wind velocity  influences the relative velocity ,

(6.17), the aerodynamic drag force , (6.22), and thus the AA

projectile trajectory ([115]).
It follows that (6.20), (6.7), (6.11), define an initial value problem

(Chap. 2, [44, 119]). The state vector  of the point mass flight
dynamics model, (6.20), is defined as follows

(6.24)

. The elements of  are given by

(6.25)

By using (6.20), (6.25), the point mass flight dynamics model is
expressed in state space form as follows

(6.26)



(6.27)

where the vector function  maps a vector in  to a vector in 

, and is obtained by using (6.25) and the right-hand-side of (6.20).

The initial position  is given by the right-hand-side of (6.7), and

the initial velocity  is given by the right-hand-side of (6.11). Thus,

, , are functions of the generalized co-ordinates  and the

generalized velocities  of the mobile ADS at time , and of the

generic firing speed  ((6.10)).

The solution of the initial value problem (6.26), in cases where it
exists and is unique (Chap. 2, [44, 119]), is denoted by  and

satisfies the following equation

(6.28)

The solution of the initial value problem is a function of time t, the
firing time , and the initial condition , and can be denoted as

follows

(6.29)



It follows from the above that the ground impact time  is a function

of the initial condition , and thus of the AA gun aiming angles at the

firing time, , . Similarly, the ground impact inertial

position   and ground impact inertial velocity   are

also functions of the AA gun aiming angles at the firing time, , 

.

The ground impact range   is defined relative to the inertial (X, Y)

co-ordinates of the AA projectile position at the firing time as follows

(6.30)

The inertial speed  and kinetic energy   of the AA projectile

are given by

(6.31)

(6.32)

Assume that the trajectory , , is a regular curve in

three dimensional space ([104]). Then, it follows that the distance
travelled along the trajectory over the time interval , also

referred to as the length of the trajectory or arc length, s(t), is given by
([104])

(6.33)



(6.34)

The initial value problem (6.26) does not have a closed-form solution. It
follows that there is no closed-form expression available for the vector
function , (6.29), in terms of time t, the firing time ,

the initial condition , and the AA projectile parameters ((6.27),

(6.22)).
Thus, a numerical solution to the initial value problem (6.26) is

computed using appropriate numerical methods ([6, 22, 27, 32, 44, 68,
77, 152, 156, 175]). Furthermore, all quantities given in (6.30)–(6.33)
are computed numerically.

Table 6.1 Table of values of the drag coefficient  of the AA projectile and the

corresponding Mach number 

0 0.182

0.01 0.182

0.4 0.186

0.6 0.187

0.7 0.187

0.8 0.196

0.9 0.232

0.95 0.29

0.975 0.331

1 0.374

1.025 0.398

1.05 0.414



1.1 0.407

1.2 0.389

1.35 0.365

1.5 0.347

2 0.287

2.5 0.239

3 0.204

3.5015 0.1773

4.0121 0.1652

6.3 Parameter Values for the Anti-Aircraft
Projectile
The parameter values for a given 35 mm AA projectile are obtained ([8,
9]) and used in this work as follows.



Fig. 6.2 Plot of the drag coefficient of the AA projectile, , versus Mach number, 

1.
The mass, (6.20), is

(6.35)

 

2.
The generic firing speed, (6.10), is

(6.36)

 

3.
The radius  and reference area , (6.22), are

(6.37)

 

4.
The numerical values of the drag coefficient, , at various Mach

numbers, , are given in Table 6.1. The afore-mentioned

numerical values were obtained from data given in Table 2 of [9],
and from the discrete data points plotted in Fig. 1(a) of [8]. A plot
of the drag coefficient, , versus the Mach number, 

, is shown in Fig. 6.2.

 

5.
Linear interpolation is used to compute the value of the drag
coefficient  for Mach numbers  lying inbetween

the data values given in Table 6.1.

 

6.4 Parameter Values for the Mobile ADS
The relevant parameter values for the mobile ADS are as follows.



1. The geometric parameters are given by (Chap. 3 and Fig. 6.1)

(6.38)

(6.39)

(6.40)

(6.41)

 

2.
The AA gun fires a single AA projectile at a sequence of increasing
elevation angles and at a fixed azimuth angle as follows

(6.42)

where

(6.43)

 

3.
The mils firing time is  for all , implying

that the time of flight to ground impact is given by

(6.44)

 

4.
The mobile ADS is completely stationary for all times 

, that is, it is in operational mode OM3 throughout

the flight of the AA projectile implying that

(6.45)

 

5. It is assumed that the mobile ADS is positioned such that (see
Fig 6 1)



Fig. 6.1)
(6.46)

It follows that the inertial position and velocity of the hinge point H
of the AA gun are given by ((6.8), (6.13))

(6.47)

 

6.
Using (2. 163), (2. 164), it follows that the AA gun azimuth and
elevation angles  and  are as follows

(6.48)

 

7. It follows that the inertial position and velocity of the AA gun
muzzle are given by

(6.49)

and that the initial inertial position and velocity of the AA projectile
are given by ((6.27), (6.7), (6.11))

(6.50)

where

(6.51)

At time  all the generalized co-ordinates in  are equal to zero

t f (6 48) (2 140)

 



except for , (6.48), , (2. 140).

8.

For each AA gun elevation angle , the corresponding

initial inertial position and velocity, , , are computed.

Some of the computed values are as follows. 

(6.52)

(6.53)

(6.54)

 

6.5 Computation of the AA Projectile
Trajectory with No Wind
In this case it is assumed that there is no wind,

(6.55)

Since there is no wind, it follows that for each AA gun elevation angle
the AA projectile trajectory will lie in the inertial (Y, Z) plane. The
trajectory is computed by solving the initial value problem (6.26)



numerically for , , using a fourth order Runge-Kutta

algorithm with a fixed time-step   s ([27, 44, 68, 77, 156]).

The numerical solution of the initial value problem is sequentially
computed at discrete times in the following set

(6.56)

where  is chosen such that it is greater than the largest possible

value of , (6.3), (6.4), for all , and such that 

 is an integer multiple  of . In this case, 

s.
In particular, the computations are performed as follows. Consider

the time interval  defined by the ith consecutive pair of times in ,

(6.56),

(6.57)

At the end of each time interval , , and having

computed  and other variables of interest at

time , the Runge-Kutta algorithm programmatically

calls a suitable algorithm (in this case, an advanced regula falsi based
algorithm implemented in the MATLAB function odezero, [32, 110,
120]) in order to find the first time  where , 

. If such a time t can be found then the ground impact time

is . The trajectory of the AA projectile is stopped at time .



Thus, the numerical solution of the initial value problem is actually
computed on the following set of times

(6.58)

In general, the length of the time horizon  is not an integer

multiple of the time-step  with the result that the last time-step is

less than .

Fig. 6.3 Plot of the AA projectile trajectories, that is,  versus , ,

for AA gun elevation angle : with no wind



Table 6.2 Table of values of the AA gun elevation angle  (mils) and the variables 

 (s),  (m),  (m),  (m/s),  (J),  (m), 

(m) (abridged headings shown below): with no wind

(mils) (s)

 (m) s (m)

(m/s)

 (J)

(m) (m)

100.0 14.03 6155.70 6191.29 224.81 13898.43 273.50 0.00

200.0 22.38 7712.13 7903.52 188.13 9733.50 721.71 0.00

300.0 29.51 8719.59 9213.11 181.59 9068.54 1253.35 0.00

400.0 36.02 9424.58 10372.89 185.12 9423.63 1847.94 0.00

500.0 42.10 9903.14 11456.28 192.01 10138.46 2491.27 0.00

600.0 47.86 10180.30 12482.83 199.60 10956.32 3170.62 0.00

700.0 53.31 10258.36 13448.76 206.82 11763.25 3872.94 0.00

800.0 58.45 10127.05 14337.72 213.29 12510.03 4583.87 0.00

900.0 63.24 9768.63 15125.87 218.87 13174.09 5287.10 0.00

1000.0 67.63 9161.94 15785.85 223.59 13748.12 5964.03 0.00

1100.0 71.53 8287.02 16291.33 227.49 14231.78 6593.88 0.00

1200.0 74.88 7129.69 16622.41 230.63 14627.01 7154.26 0.00

1300.0 77.60 5688.62 16773.49 232.90 14916.18 7622.24 0.00

1400.0 79.60 3982.85 16762.69 234.40 15108.83 7976.03 0.00

1500.0 80.83 2059.08 16644.19 235.27 15222.23 8197.07 0.00

In subsequent Chapters the Runge-Kutta algorithm is applied in
order to solve numerically sets of nonlinear ODEs over time horizons
whose lengths are not an integer multiple of the fixed time-step. Thus,
the numerical solutions are computed on sets of times that have a
structure that is equivalent to (6.58). In order to simplify the
presentation the sets of times will be represented in a form analogous
to the following

(6.59)

and reference will be made to (6.59).



The computed AA projectile trajectories are shown in Fig. 6.3. The
ground distance from the AA gun muzzle to the ground impact point, 

, (6.30), is given in Table 6.2 and shown in Fig. 6.4. Additional results of
interest are shown in Figs. 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11.

Fig. 6.4 Plot of ground distance to AA projectile ground impact point  versus AA gun

elevation angle : with no wind



Fig. 6.5 Plot of AA projectile ground impact speed  versus AA gun elevation angle 

: with no wind



Fig. 6.6 Plot of AA projectile time of flight to ground impact  versus

AA gun elevation angle : with no wind



Fig. 6.7 Plot of AA projectile kinetic energy at ground impact  versus AA gun

elevation angle : with no wind



Fig. 6.8 Plot of AA projectile speed  versus , , for AA gun

elevation angle  (plots for increasing  are towards lower left): with

no wind



Fig. 6.9 Plot of AA projectile aerodynamic drag force magnitude  versus , 

, for AA gun elevation angle  (plots for increasing  are

towards lower left): with no wind



Fig. 6.10 Plot of the total length of the AA projectile trajectory  versus the AA gun

elevation angle : with no wind



Fig. 6.11 Plot of the maximum of the AA projectile Z co-ordinate  over time t, 

, versus the AA gun elevation angle : with no wind



Fig. 6.12 Plot of the three-dimensional AA projectile trajectories, that is,  versus 

 and , , for AA gun elevation angle : with a

cross wind

6.6 Computation of the AA Projectile
Trajectory with a Cross Wind
In this case it is assumed that there is a cross wind given by

(6.60)

Due to the direction of the cross wind, the AA projectile moves to the
left of the inertial (Y, Z) plane (when looking in the direction of the
positive Y axis) and impacts the second quadrant of the inertial (X, Y)
plane. The computed trajectories are plotted in Fig. 6.12. The inertial
(X, Y) plane co-ordinates of the ground impact points are shown in Fig.
6.14.



Fig. 6.13 Plot of ground distance to AA projectile ground impact point  versus AA gun

elevation angle : with a cross wind



Fig. 6.14 Plot of Y co-ordinate  versus X co-ordinate  of the AA

projectile ground impact inertial position for AA gun elevation angle  (impact

points for increasing  are towards the left): with a cross wind

Table 6.3 Table of values of the AA gun elevation angle  (mils) and the variables 

 (s),  (m),  (m),  (m/s),  (J),  (m), 

(m) (abridged headings shown below): with a cross wind

(mils) (s)

 (m) s (m)

(m/s)

 (J)

(m) (m)

100.0 14.03 6155.84 6191.53 224.85 13902.83 273.50

200.0 22.38 7712.50 7904.11 188.18 9738.51 721.70



(mils) (s)

 (m) s (m)

(m/s)

 (J)

(m) (m)

300.0 29.51 8720.23 9214.05 181.65 9073.87 1253.35

400.0 36.02 9425.52 10374.16 185.17 9429.16 1847.93

500.0 42.10 9904.42 11457.87 192.06 10144.13 2491.26

600.0 47.85 10181.95 12484.71 199.66 10962.08 3170.61

700.0 53.31 10260.43 13450.92 206.87 11769.09 3872.92

800.0 58.45 10129.61 14340.14 213.34 12515.92 4583.85

900.0 63.24 9771.76 15128.55 218.92 13180.02 5287.07

1000.0 67.63 9165.77 15788.79 223.64 13754.06 5963.99

1100.0 71.53 8291.76 16294.56 227.54 14237.72 6593.84

1200.0 74.88 7135.72 16625.96 230.67 14632.95 7154.21

1300.0 77.60 5696.70 16777.45 232.94 14922.10 7622.19

1400.0 79.60 3994.94 16767.23 234.44 15114.74 7975.97

1500.0 80.83 2083.01 16649.77 235.32 15228.11 8197.01

The ground distance to the ground impact point, , is shown in

Fig. 6.13. It turns out that for AA gun elevation angles of approximately
400 mils and larger the ground distance to the ground impact point
gradually increases relative to the case with no wind, see Table 6.3. The
rest of the results are broadly similar to the results obtained for the
case with no wind and are not shown here in order to save space.



(1)
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This Chapter deals with the formulation and numerical solution of a
conceptual fire control problem FCA as follows.

1.
Fire control problem FCA involves the specification of a finite
number of intercept times of the AA projectile with the CM of the
AAT, , . The associated firing times , 

, are obtained as shown below.

 

2. For each given intercept time  the following quantities are

computed.

a.
The inertial azimuth and elevation angles of the fire control
vector, , . At time , the aiming

azimuth and elevation angles of the AA gun are equal to 
 and , respectively.

 

b.
The time of flight of the AA projectile to the CM of the AAT, 

.
 

 

https://doi.org/10.1007/978-3-030-55498-9_7
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c. It follows that the firing time of the AA projectile is 

.
 

The fire control problem is also formulated using feasible control.

7.1 Fire Control Problem FCA
The mobile ADS engages the AAT over a finite time horizon  ,

(7.1)

In order to establish an upper limit on the performance of the mobile
ADS an ideal case is assumed. In particular, it is assumed that the
inertial trajectories of the CM of the AAT and the inertial trajectories of
the hinge point H of the AA gun are given. In practical applications,
error-prone estimation algorithms and noisy sensors are employed in
order to estimate the motion of the AAT relative to the mobile ADS. This
will inevitably lead to reduced performance compared to the ideal case
considered here.

The position, velocity and acceleration trajectories of the center of
mass of the AAT are denoted as follows

(7.2)

Given the reference trajectories for the mobile ADS, (5. 1)–(5. 7). Then,
the closed loop trajectories of the vehicle system , , 

, are computed by using (4. 75)–(4. 79), (3. 33)–(3. 34), leading to the
computation of the trajectories

(7.3)

Using the above, it is possible to compute the trajectory of the hinge
point H of the AA gun, together with the first and second order time
derivatives, given by



(7.4)

and to compute various other quantities of interest (Chaps. 2 and 3).

Fig. 7.1 Schematic of the mobile air defence system

It is assumed throughout that the vehicle body of the mobile ADS is
not rotating relative to the inertial reference frame I and that it is in
either one of the following two states.

1. The vehicle body is completely stationary implying that
(7.5) 



2.
The vehicle body is moving forward at a constant speed  and in a

straight line that coincides with the longitudinal axis (  axis) of

the vehicle body, Fig. 7.1, implying that

(7.6)

and where  a fixed angle, .

 

The formulation of fire control problem FCA is based on the
following assumptions and methods.

1.
Given a finite number  of intercept times of the AA projectile

with the center of mass of the AAT, , ,

(7.7)

In this work the first and final intercept times are chosen as
follows

(7.8)

 

2. Given the intercept times, (7.7), (7.8), the firing time of the AA
projectile, , is obtained as follows

(7.9)

 



where  is the time of flight of the AA projectile to the

intercept point , (7.12), and must be computed as part of

the solution to fire control problem FCA.
3.

It follows that the first firing time  will be a negative number

given by

(7.10)

The initial time  of the time horizon , (7.1), is set equal to 

 as follows

(7.11)

Thus, the initial time  is not known beforehand and the values

of variables at time  cannot be specified beforehand. In order to

circumvent this difficulty certain assumptions are made such that
once  is computed, (7.10), the values of variables at time 

 can also be computed.

 

4.
By using (7.7), (7.2), the  intercept points on the inertial

trajectory of the center of mass of the AAT are computed as
follows

(7.12)

 

5.
In the sequel, the index k refers to the kth intercept time, (7.7).
Thus, all variables can be indexed in terms of k or they can
equivalently be expressed as a function of the kth intercept time 

, or the kth firing time , .

 

6. It is assumed that at each firing time  the AA gun is



completely stationary relative to the vehicle body of the mobile
ADS.

 
7.

The FC vector, , is a unit vector pointing from the hinge

point H of the AA gun outwards, and is given by

(7.13)

where  is the azimuth angle and  is the

elevation angle of the FC vector, and must be computed as part of
the solution to fire control problem FCA.

 

8.
In fire control problem FCA, the AA gun can only fire at the times
defined in (7.9). It is assumed that at each firing time  the AA

gun aiming vector, , is equal to the FC vector, 

, implying that

(7.14)

and

(7.15)

.

 

9. Given the above assumptions that at each firing time  the AA

gun is completely stationary relative to the vehicle body and that
the vehicle body is not rotating relative to the inertial reference
frame throughout the engagement. Then, it follows that at each
firing time  both the FC vector and the AA gun aiming vector

i i h h i i l f f I Thi

 



are not rotating with respect to the inertial reference frame I. This
implies that

(7.16)

(7.17)

.

10.
It is assumed that the nonlinear feedback control law of the
mobile ADS will precisely rotate the AA gun from one stationary
firing position relative to the vehicle body at time , to the

next stationary firing position relative to the vehicle body at time 
, such that constraints (7.15)–(7.17) are satisfied, 

.

 

11.
The initial conditions of the AA projectile that is fired at time 

 depend on the values of the inertial angles of the FC vector, 

, , .

 

12. Furthermore, the inertial position and velocity trajectories of the
AA projectile that is fired at time  are denoted as functions of

 and of a different time variable  used to describe the

motion of the AA projectile over the time horizon ,

as follows

( )

 



(7.18)

. Thus,  is used as an index variable in order to

associate  to the AA projectile that is fired at time 

, .

13. For each given intercept time , , the above-

mentioned trajectories of the AA projectile are computed by
solving an initial value problem involving the point mass flight
dynamics model ((6. 26)) expressed in terms of time  as follows

(7.19)

(7.20)

where the initial conditions , , in (7.20)

are computed by using (2. 168), (2. 173), respectively, as follows

(7.21)

where

(7.22)

 



(7.23)

and

(7.24)

. It has been assumed that either the vehicle body

of the mobile ADS is moving forward at a constant speed  and in

a straight line implying that , , or that the

vehicle body is stationary implying that  in (7.24).

14. The fire control problem FCA is defined as follows.
For each given intercept time  compute the parameters 

, , that is, the inertial angles of the FC vector and

the time-of-flight of the AA projectile,

(7.25)

where

(7 26)

 



(7.26)

such that the following holds. The AA projectile that is fired at
time  will intercept the center of mass of the AAT at the

specified intercept time , that is,

(7.27)

(7.28)

(7.29)

where   are given positive real numbers

representing the minimum and maximum permissible times of
flight, respectively, and where  are

given lower and upper bounds for the elevation angle of the FC
vector. The above computation is repeated in sequence for each
intercept time , .

15.
At each time  the FC vector points ahead of the LOS vector

due to the finite time of flight .

 

The following should be noted with regard to fire control problem
FCA, (7.25)–(7.29).

1.
It has been implicitly assumed that fire control problem FCA has a
solution, that is, the sequence of values , , 

, , exist. However, for various reasons fire

control problem FCA may not have a solution.

 

2. For example, if an intercept point between the AA projectile
trajectory and the trajectory of the AAT at the specified intercept  



time  does not exist then fire control problem FCA does not

have a solution for the given .

3.
For the case where the AA gun must engage a stationary target
lying on the (X, Y) plane, fire control problem FCA may have two
solutions. One solution represents a “low trajectory” and
corresponds to the minimum time of flight and is the desirable
solution. The other solution represents a “high trajectory” and
corresponds to a longer time of flight.

 

4.
There is no closed-form expression available for 

 appearing in the equality constraint (7.27), in

terms of the variables , , , (7.25), and other given

parameters (Chap. 6).

 

5.
In the application of an iterative constrained minimization
algorithm to compute , , , and solve

fire control problem FCA, it may happen that at some
intermediate iteration the computed values , , , are

such that the AA projectile impacts the ground, (6. 3), (6. 4), before
the final time . In this case, the trajectory of the AA

projectile will be stopped at time , (6. 3).

 

6. Fire control problem FCA deals with the conceptual problem of
the AA projectile intercepting the center of mass of the AAT. Thus,
the following aspects are not taken into account.

a.
The fact that the AA projectile will practically first impact the
body of the AAT before reaching the center of mass.

 
b.

The geometric shape of the body of the AAT.  
c.

The material properties of the body of the AAT and of the AA

 



The material properties of the body of the AAT and of the AA
projectile.

 

The above-mentioned points 6a, 6b, are taken into account in
Chap. 8.

7.
Assume that the sequence of values , , 

, , solve fire control problem FCA. Then, the

following sequence of values also solve fire control problem FCA

(7.30)

If needed, constraints can be added to  in order to

exclude periodic solutions, (7.30).

 

8.
The following constraints limit the deviation of the inertial angles
of the FC vector from the inertial angles of the LOS vector at time 

, and can be included in the formulation of fire control

problem FCA as follows

(7.31)

where the bounds , , are chosen appropriately, for

example, , .

 

9. The miss distance   between the AA projectile fired at

time , and the center of mass of the AAT at time 

, is given by ((7.27))

(7 32)

 



(7.32)

By using (7.32), the vector equality constraint (7.27) can be
replaced by an equivalent scalar equality constraint given by

(7.33)

10.
The following single equality constraint is equivalent to (7.33)
and also to (7.27), for all ,

(7.34)

 

11. It is possible to express the inertial angles of the FC vector as the
sum of the known inertial angles of the LOS vector and an
unknown lead azimuth angle  and unknown lead

elevation angle  , respectively, that must be

determined, as follows

(7.35)

. The angles , , are referred

to as the lead angles of the FC vector. Thus, fire control problem
FCA is reformulated as follows. For each given intercept time 

, compute the parameters , , , determining the

variable values , , 

, such that the constraints (7.27)–(7.29) are

satisfied. The following inequality constraints are equivalent to
(7.31), and can be added to the reformulated fire control problem
FCA as follows

 



(7.36)

7.2 Fire Control Problem Formulation Using
Feasible Control
Feasible control was co-developed with Prof. Yaakov Yavin (1935–
2006) at the Laboratory for Decision and Control, Dept. of Electrical,
Electronic and Computer Engineering, University of Pretoria. Feasible
control circumvents certain difficulties that arise with optimal
control and related methods ([14, 15, 21, 37, 89, 96, 102, 143, 166]).

Feasible control facilitates the design of control strategies for linear
and nonlinear dynamic systems such that a wide range of practical
performance specifications and constraints are satisfied. Feasible
control has been applied to the following problems.

1. In [212] feasible control is applied in order to compute an open-
loop control strategy for the rudder of a super tanker ship such that
it maneuvers safely through constrained waters, in this case, a
narrow zigzag channel. The open loop control strategy is assumed
to be a piecewise constant or a piecewise linear function of time
and is parameterized by a finite number of parameters grouped in
a vector . The feasible control problem consists of determining

the vector  such that a number of practical specifications and

constraints are satisfied. The specifications and constraints are
expressed as inequalities in the time domain, and there is no
objective function that must be minimized or maximized. Thus, the
emphasis of feasible control is on feasibility and not on optimality.

Given the complicated form of the hydrodynamic model of the
super tanker ship, and of the specifications and constraints that
have to be satisfied. If an approach based on optimal control is
attempted then application of the Pontryagin minimum principle
will result in a two-point-boundary-value-problem (TPBVP)
representing necessary conditions for an optimal control. In this

 



case, the TPBVP will have a very complicated form and be difficult
to solve numerically.

2.
In [55, 56], feasible control is applied in order to compute the
vector  parameterizing a closed loop dynamic controller for a

linear model of an aerial vehicle such that a wide range of
specifications and constraints are satisfied. The dynamic controller
has the structure of a linear quadratic Gaussian (LQG) controller.
The vector  parameterizes the state weighting matrix and the

state noise covariance matrix of an auxiliary LQG control problem.
The linear model of the aerial vehicle is subject to random initial
conditions, while the addition of white state noise and white
measurement noise is considered in [56]. The constraints and
specifications are expressed as inequalities in the time domain, s-
domain, and frequency domain.

 

3.
In [59] feasible control is applied in order to compute the vector 

parameterizing a portfolio control strategy for an insurance
company such that a range of specifications and constraints are
satisfied. A nonlinear discrete-time state space model of the
asset/liability structure is used. The state space model describes
the evolution over time of all the asset accounts and all the liability
accounts on the balance sheet of the insurance company, and
incorporates the effects of various types of financial transactions.

 

4.
In [210, 211], feasible control is applied in order to compute the
vector  parameterizing open-loop control strategies for

mechanical systems, for example, a disk rolling on a stationary or
moving horizontal plane.

 

In this Section, the fire control problem is formulated using feasible
control as follows.

1. As in fire control problem FCA, for each given intercept time ,

the parameters , ,  in (7.25) determining , 
 



, , must be computed such that certain inequality

constraints are satisfied. For convenience, the parameters , ,

 in (7.25) are grouped in a vector  as follows

(7.37)

The application of feasible control deals with the satisfaction of the
following inequality constraints.

2.
Firstly, it is assumed that the equality constraint (7.33) must be
satisfied within an error tolerance , as follows,

(7.38)

 

3.
Secondly, it is required that a number of inequality constraints are
satisfied, as follows

(7.39)

where , , . The

functions  represent practical performance specifications and

constraints, including, for example, the constraints (7.27)–(7.29),
(7.31).

 

4. Define the function  as follows

(7.40)

where the penalty weights , , 

, and pen  is a quadratic penalty function defined

as follows ([11, 30, 140, 164])
(7 41)

 



(7.41)

, , , . The function  for all

vectors . Note that there is no closed-form expression

available for the miss distance , (7.32), and generally

for the functions , and thus for the function , (7.40), in terms

of the vector  and other given parameters.

5.
The objective is to find a vector  such that the constraints,

(7.38), (7.39), are satisfied. The constraints (7.38), (7.39), are
satisfied if and only if the equation  is satisfied. Thus, a

vector  is feasible if and only if it satisfies the equation 

, that is,

(7.42)

Equation (7.42) may have more than one solution, that is, a feasible
vector  is not necessarily unique.

 

6. A formulation of the fire control problem using feasible control is
as follows. Compute a vector  such that the Eq. (7.42) is

satisfied. Given an initial guess for the vector , an iterative

minimization algorithm is applied in order to gradually reduce 

to zero in double precision ([11, 30, 140, 149, 164]).

 



7.
If a vector  is obtained such that Eq. (7.42) is satisfied then  is

feasible. By applying (7.25) feasible variable values , 

, , are obtained. The above procedure is repeated

in order to compute a feasible vector  for each intercept time 

, . The question of existence and uniqueness of

solutions to the equation  is beyond the scope of existing

works on feasible control ([55, 56, 59, 212]).

 

7.3 Air Defence System Deployment and
Attacking Aerial Target Engagement Scenario
The deployment of the mobile ADS is shown in Fig. 7.2. It is assumed
that the defended location is fixed at the origin  of the inertial co-

ordinate system (X, Y, Z) with unit vectors .



Fig. 7.2 Schematic of the deployment of the mobile ADS and the attacking aerial target; the
defended location is at the origin 

The mobile ADS is at a distance  from the origin  and at an

angle  relative to the X axis.1 The projection of the trajectory of the

AAT onto the (X, Y) plane is also shown in Fig. 7.2.
In order to simplify the computations the following assumptions

and methods are employed.

1.
It is assumed that the AAT is moving in a straight line, at a constant
height and at a constant velocity.

 
2.

As stated earlier in this Chapter, the vehicle body of the mobile ADS
is assumed to be either completely stationary or moving forward in
a straight line and at a constant speed.

 

3. The values of the position vectors , , are specified at

the first given intercept time, that is, at time , (7.8),

 



and are denoted as follows , 

.

4.
Based on the assumed motion trajectories of the mobile ADS and
the AAT it follows that  and  can be computed for any 

 by using forward in time extrapolation if , and

backward in time extrapolation if .

 

In the case of the mobile ADS the position vector  is given by

(Fig. 7.2)

(7.43)

where

(7.44)

The position vector  is computed by using  and (7.22).

The vehicle body of the mobile ADS is moving forward in a straight
line at a constant speed , and the inertial velocity  is given by

((7.24))

(7.45)

If the vehicle body is actually stationary throughout the engagement of
the AAT then  m/s implying that , (7.45). Thus, the



initial velocity of the AA projectile  is obtained by using

(7.45), (7.24).
The inertial position vector  is given by

(7.46)

For any computed firing time , (7.9), the position vector 

 is obtained by using (7.46) as follows

(7.47)

Thus, the initial position of the AA projectile  is obtained

by using (7.47), (7.21)–(7.23).
In the case of the AAT the position vector  is given by

(7.48)

where  m,  m. The AAT is flying towards the

defended location in a straight line, at constant altitude  and at a

constant speed . The inertial velocity of the center of mass of the

AAT is given by

(7.49)

where  m/s,  mils  rad. The inertial

position of the center of mass of the AAT   is given by

(7.50)



For any computed firing time , (7.9), the position vector 

 is obtained by using (7.50) as follows

(7.51)

7.4 Computational Results for Fire Control
Problem FCA: Vehicle Body of Mobile ADS is
Completely Stationary
The vehicle body of the mobile ADS is completely stationary throughout
the engagement of the AAT implying that ((7.24))

(7.52)

The following numerical data is used in the computations.

1.
The angle  of the mobile ADS is given by

(7.53)

 

2.
The initial and final times are given by

(7.54)

where  must be computed. The computations below yield 

 s.

 

3. The sequence of intercept times is equally spaced and is given by

(7.55)

 



Thus, the set of specified intercept times (in seconds) is given by

(7.56)

4.
A fourth order Runge-Kutta algorithm is used in order to solve
numerically the point mass flight dynamics model of the AA
projectile with a fixed time-step

(7.57)

on the set of times ((6. 59))

(7.58)

where .

 

5.
The bounds used in the constraints (7.28)–(7.29) are as follows

(7.59)

 

6.
For each k, a constrained minimization algorithm implemented by
the MATLAB Optimization Toolbox function fmincon ([111]) is
employed in order to compute the three variables , , ,

(7.25), such that the three equations (7.27) are satisfied subject to
the constraints (7.28)–(7.29). Each of the three equations (7.27) is
satisfied within a specified absolute error tolerance of . The

function fmincon requires the user to specify a cost function, 

. In this case the cost function is specified as a fixed value, .

 



Fig. 7.3 Plot of the inertial X, Y, Z,  co-ordinates of the AA projectile trajectory , 

, for , and of points on the AAT trajectory , (o), 

: vehicle body of mobile ADS is stationary



Fig. 7.4 Plot of the inertial azimuth angle of the FC vector , (x), and the inertial

azimuth angle of the LOS vector , (o), versus the intercept time , 

: vehicle body of mobile ADS is stationary



Fig. 7.5 Plot of the inertial elevation angle of the FC vector , (x), the inertial

elevation angle of the LOS vector , (o), and the inertial elevation angle of the

projectile velocity vector , ( ), versus the intercept time , 

: vehicle body of mobile ADS is stationary



Fig. 7.6 Plot of the time of flight of the AA projectile  versus the intercept time , 

: vehicle body of mobile ADS is stationary



Fig. 7.7 Plot of the firing time of the AA projectile  versus the intercept time , 

: vehicle body of mobile ADS is stationary



Fig. 7.8 Plot of the LOS distance , (x), and the LOS distance , (o),

versus the intercept time , : vehicle body of mobile ADS is stationary



Fig. 7.9 Plot of the intercept speed of the AA projectile , (x), and the

relative intercept speed of the AA projectile , (o), versus the

intercept time , : vehicle body of mobile ADS is stationary



Fig. 7.10 Plot of the lead azimuth angle  versus the intercept time , 

: vehicle body of mobile ADS is stationary



Fig. 7.11 Plot of the lead elevation angle  versus the intercept time , 

: vehicle body of mobile ADS is stationary

With reference to the computational results presented in Figs. 7.3,
7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10 and 7.11, note the following.

1.
The results are plotted versus the discrete intercept times , 

, (7.55), on the horizontal axis in Figs. 7.4, 7.5, 7.6,

7.7, 7.8, 7.9, 7.10 and 7.11. Variables that are indicated as being
functions of the firing time  are also plotted versus the

discrete intercept times , .

 

2. It can be seen from Fig. 7.5 that the inertial elevation angle of the
velocity vector of the AA projectile at the intercept time with the  



CM of the AAT, , is positive for all ,

(7.60)

In this work it will be assumed throughout that condition (7.60)
holds. Thus, engagement scenarios where 

are not considered, that is, scenarios where the AA projectile at the
intercept time  is moving parallel to or falling towards the

(X, Y) plane.
3.

The minimum distance  is 1157.1 m and occurs at time

 s. This particular AAT position is known as the closest

point of approach (CPA).

 

4.
The intercept speed of the AA projectile is given by

(7.61)

The relative intercept speed of the AA projectile is defined as
follows

(7.62)

 

Figure 7.3 shows plots of the AA projectile trajectories intercepting
the center of mass of the AAT for the following selection of intercept
times , . The projection of the trajectory of

the AAT onto the (X, Y) plane is also shown, as well as part of a circle
with center the origin  and with radius .

As shown in Fig. 7.4, the inertial azimuth angle of the FC vector is
always larger than the inertial azimuth angle of the LOS vector at the
firing time , see also Fig. 7.10. The above is true for the case of the



inertial elevation angles, except when the AAT is moving away from the
mobile ADS, see Figs. 7.5, 7.11 and 7.6.

The maximum intercept speed, (7.61), is 922.3 m/s and occurs at
time  s (see Fig. 7.9), that is, at the CPA. The maximum

relative intercept speed, (7.62), is 1032.7 m/s and occurs at time 
 s (see Fig. 7.9).

7.5 Computational Results for Fire Control
Problem FCA: Vehicle Body of Mobile ADS is
Moving in a Straight Line at Constant Speed
In this case the vehicle body of the mobile ADS is moving forward in a
straight line at constant speed  throughout the engagement of the

AAT. If the following parameter values are assumed ((7.24))

(7.63)

then it follows that

(7.64)

The computational results are presented in Figs. 7.12, 7.13, 7.14, 7.15,
7.16, 7.17, 7.18, 7.19 and 7.20. In this case  s, (7.54).

The CPA is 1354.0 m and occurs at time  s, see Fig. 7.17.

In Fig. 7.12, the AA projectile trajectory intercepts the center of
mass of the AAT at each given intercept time , while the inertial

position of the muzzle of the AA gun during the motion of the mobile
ADS is also depicted, for .

As shown in Fig. 7.19 the lead azimuth angle  is in this

case larger than the case where the mobile ADS is stationary (see Fig.



7.10) due to the forward motion of the mobile ADS at a constant speed
and in a straight line that is parallel to .

Fig. 7.12 Plot of the inertial X, Y, Z,  co-ordinates of the AA projectile trajectory , 

, for , and of points on the AAT trajectory , (o), 

: vehicle body of mobile ADS is moving



Fig. 7.13 Plot of the inertial azimuth angle of the FC vector , (x), and the inertial

azimuth angle of the LOS vector , (o), versus the intercept time , 

: vehicle body of mobile ADS is moving



Fig. 7.14 Plot of the inertial elevation angle of the FC vector , (x), the inertial

elevation angle of the LOS vector , (o), and the inertial elevation angle of the

projectile velocity vector , ( ), versus the intercept time , 

: vehicle body of mobile ADS is moving



Fig. 7.15 Plot of the time of flight of the AA projectile  versus the intercept time , 

: vehicle body of mobile ADS is moving



Fig. 7.16 Plot of the firing time of the AA projectile  versus the intercept time , 

: vehicle body of mobile ADS is moving



Fig. 7.17 Plot of the LOS distance , (x), and the LOS distance , (o),

versus the intercept time , : vehicle body of mobile ADS is moving



Fig. 7.18 Plot of the intercept speed of the AA projectile , (x), and the

relative intercept speed of the AA projectile , (o), versus the

intercept time , : vehicle body of mobile ADS is moving



Fig. 7.19 Plot of the lead azimuth angle  versus the intercept time , 

: vehicle body of mobile ADS is moving



Fig. 7.20 Plot of the lead elevation angle  versus the intercept time , 

: vehicle body of mobile ADS is moving

The maximum intercept speed, (7.61), is 870.9 m/s and occurs at
time  s (see Fig. 7.18), that is, close to the CPA. The

maximum relative intercept speed, (7.62), is 995 m/s and occurs at
time  s (see Fig. 7.18). The intercept speed and relative

intercept speed values are lower than the corresponding values for the
case of the stationary mobile ADS. The main reason is that the mobile
ADS is moving parallel to , and after some point is effectively moving

away from the AAT.



1

Footnotes
In practice, there will be several mobile ADSs deployed and suitably positioned in order to

jointly engage one or more AATs.
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8. Computation of the Impact Point of
the AA Projectile on the Body of the
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South Africa

 

This Chapter deals with the computation of the impact point of the AA
projectile on the body of the AAT as follows.

1.
The geometry of the three-dimensional body of the AAT is given in
Fig. 8.1. A body reference frame  is defined with origin fixed at

the center of mass of the AAT.

 

2.
A computational method is presented for computing the impact
point of the AA projectile on the body of the AAT relative to the
origin of the body reference frame  and expressed in .

 

8.1 Geometry of the Attacking Aerial Target
In this work the AAT  is assumed to have the geometry shown in
Fig. 8.1. The body of the AAT consists of a half-sphere of radius 

mounted on a cylinder of length  and radius , , , 

https://doi.org/10.1007/978-3-030-55498-9_8


, . The surfaces of the half-sphere and cylinder are closed.

The longitudinal axis of the AAT coincides with the longitudinal axis of
the cylinder.

It is assumed that there is a body reference frame   and an

associated co-ordinate system    with unit vectors 

   and with origin fixed at the center of mass of the

AAT (Fig. 8.1).
It is assumed that the CM lies on the longitudinal axis of the AAT

and that the  axis points forward and coincides with the

longitudinal axis of the AAT. The  axis is perpendicular to the 

 axis and is parallel to the inertial (X, Y) plane during level flight.

The  axis points up and is perpendicular to the 

plane.

Fig. 8.1 Schematic of attacking aerial target

The AA projectile impacts the body of the AAT if it enters the space
occupied by the half-sphere or the space occupied by the cylinder.1 The



above-mentioned spaces are sets of position vectors 

defined relative to the origin of the body reference frame  and

expressed in , as follows

(8.1)

(8.2)

The sets  and  have common elements, that is, the disk shaped

surface on the right part of the half-sphere coincides with the disk
shaped surface on the left part of the cylinder (Fig. 8.1). It follows that
the set  is not empty.

The sets  and  are defined by inequalities, (8.1), (8.2). By

using penalty functions, the sets  and  can each be defined by a

single equality as follows

(8.3)

(8.4)

(8.5)

(8.6)

where pen  is an absolute value penalty functiongiven by ([11, 30, 140,

164])
(8.7)



, , , . In the sequel the impact of the AA

projectile on the body of the AAT will be described by using the set 
 given by

(8.8)

By using (8.3)–(8.7) the set  is equivalently defined as follows

(8.9)

Attacking aerial targets can have a more complicated geometry and
incorporate, for example, wings, tail planes, fins, canards, etc. The set 

 for such AATs can be defined in a manner analogous to that given

above.

8.2 Inertial Trajectory of the Attacking Aerial
Target
The following assumptions are applicable with regard to the inertial
trajectory of the AAT.

1. The inertial trajectory of the center of mass of the AAT, , as

well as the Euler angles and Euler angular rates are specified as
follows

(8.10)

 



(8.11)

The dynamic model of the AAT and the feedback control law
required to produce the specified motion of the AAT, (8.10), (8.11),
are not considered in this work.

2.
The rotation matrix from the inertial reference frame I to the body
reference frame  of the AAT is given by (Appendix A)

(8.12)

 

3.
Consider the AAT motion trajectory presented in Chap. 7. The AAT
is flying towards the defended location in a straight line, without
rolling or pitching, at constant altitude  and at a constant

speed  (Fig. 7. 2). Thus, it follows that the inertial velocity

vector of the center of mass of the AAT is parallel to  and is

given by ((7. 49))

(8.13)

The above implies that the inertial azimuth angle of the velocity
vector is , and that the Euler azimuth angle of the

body reference frame  is constant and is given by

(8.14)

All the other Euler angles and Euler angular rates are zero ((8.11)).

 

4. It follows that the associated rotation matrix is given by ((8.12),
Appendix A)

(8.15)

 



8.3 Computation of the Impact Point of the AA
Projectile on the Body of the Attacking Aerial
Target
The computational results for fire control problem FCA are employed
for the case of a completely stationary vehicle body of the mobile ADS
as obtained in Chap. 7. Thus, for each given intercept time of the AA
projectile with the CM of the AAT, , the following have been

computed for .

1.
The inertial azimuth and elevation angles of the FC vector 

, .
 

2.
The time of flight of the AA projectile to the CM of the AAT, .  

3.
The firing time of the AA projectile is thus .  

4.
In Chap. 7 the geometry of the body of the AAT is ignored. Thus, the
AA projectile that is fired at time , travels over the time

interval

(8.16)

until intercept with the CM of the AAT at time .

 

5.
In this Chapter the geometry of the body of the AAT is taken into
account. Thus, the AA projectile will actually impact the body of the
AAT at some time  slightly before the intercept time with the

CM, , and .

 



The position vector of the AA projectile fired at time  relative

to the CM of the AAT at time t is given by

(8.17)

where  is obtained by solving the point mass flight

dynamics model of the AA projectile (7. 19). The vector  is

expressed in the body reference frame  as follows ((8.12))

(8.18)

In order to simplify the presentation,  is replaced by k and the

superscript  is suppressed, as follows

(8.19)

The AA projectile impacts the body of the AAT at time  implying

that , (8.9). Thus, the impact point of the AA

projectile on the body of the AAT is .

In order to accurately compute the impact time and the impact
point of the AA projectile on the body of the AAT the following
approach is applied. Consider a sphere with radius  and with center

fixed to the CM of the AAT. This sphere completely encloses the AAT and
is referred to as the target bounding sphere (TBS). It follows that 

must be larger than the radius of the sphere that just encloses the body
of the AAT. The space of the TBS is defined by the following set

(8.20)



The set  is equivalently defined as follows

(8.21)

where

(8.22)

As soon as the incoming AA projectile enters the space of the TBS then
a much smaller time-step   is used in the numerical computation of

the trajectory of the AA projectile and of the AAT,

(8.23)

In this manner the final approach of the AA projectile towards the AAT
is computed more accurately thus leading to a more accurate
computation of the impact time and the impact point of the AA
projectile on the body of the AAT. If the values of the time-steps , 

, are decreased and the value of the TBS radius  is increased

then this will generally result in a more accurate computation of the
impact time and impact point. However, a longer computation time will
be required.

The details of the computational procedure are as follows.

1. A suitable numerical integration algorithm(for example, a fourth
order Runge-Kutta algorithm) with a fixed time-step  is

applied in order to compute all variables of interest at discrete
times in the set  given by ((6. 59))

(8.24)

where ,  denotes the number of

elements in the set , and  are used as

 



auxiliary variables.
2.

In particular, the computations are performed as follows. Consider
the time interval  defined by the ith consecutive pair of

times in , (8.24),

(8.25)

At the end of each time interval , , and

having computed  and other variables of interest at

time , the numerical integration algorithm programmatically

calls a suitable algorithm (in this case, an advanced regula
falsi based algorithm implemented in the MATLAB function
odezero, [32, 110, 120]) in order to find the first time 

where  is an element of the set , (8.21),

(8.26)

 

3. If such a time t can be found then the intercept time of the AA
projectile with the TBS is . The same numerical

integration algorithm using a fixed time-step  is applied in

order to compute all variables of interest from the time  to

the specified intercept time  at discrete times in the set 

 given by ((6. 59))

(8.27)

 



where , and  are used as

auxiliary variables.
4.

In particular, the computations are performed as follows. Consider
the time interval  defined by the ith consecutive pair of

times in , (8.27),

(8.28)

At the end of each time interval , , and

having computed  and other variables of interest at

time , the numerical integration algorithm programmatically

calls a suitable algorithm (in this case, an advanced regula
falsi based algorithm implemented in the MATLAB function
odezero, [32, 110, 120]) in order to find the first time 

where  is an element of the set , (8.9),

(8.29)

 

5. If such a time t can be found then the following holds.

a.
The impact time of the AA projectile with the body of the AAT
is .

 

b.
The impact point of the AA projectile on the body of the AAT is 

.
 

c. The trajectories of the AA projectile and of the AAT are stopped

 



c. The trajectories of the AA projectile and of the AAT are stopped
at time .  

In summary, a numerical integration algorithm with a fixed time-
step is used to compute the motion trajectories of the AA projectile and
the AAT. Furthermore, the numerical integration algorithm
programmatically calls at the end of each time-step ((8.25), (8.28)) a
suitable algorithm ([120]) in order to firstly detect the impact of the AA
projectile with the TBS, (8.26), and thereafter to compute the impact
time and impact point of the AA projectile on the body of the AAT,
(8.29).

8.4 Vulnerability Model of the Attacking Aerial
Target
In this work it is assumed that if one AA projectile impacts any point on
the body of the AAT then the AA projectile detonates and the AAT is
destroyed.

Advanced vulnerability models of AATs include additional
refinements and features. For example, one refinement is to divide the
body of the AAT into a number of compartments. Each given
compartment contains particular types of systems and requires a
specified minimum number of AA projectile impacts before it is
destroyed. The complete AAT is destroyed if given combinations of
compartments are destroyed ([40]).

Another feature of advanced vulnerability models is the possibility
of taking into account the material properties of the body of the AAT
and of the AA projectile. For example, some vulnerability models
consider the detonation and fragmentation of the AA projectile and the
subsequent fragment motion and impact with systems located inside
the AAT ([40]).

8.5 Computational Results
The numerical solution of fire control problem FCA for the case of a
completely stationary vehicle body of the mobile ADS is employed
(Sect. 7. 4). Some of the relevant data is repeated here for convenience.



The initial and final times are given by

(8.30)

The sequence of intercept times, (7. 7), is equally spaced and is given by

(8.31)

Thus, the set of specified intercept times (in seconds) is given by

(8.32)

A fourth order Runge-Kutta algorithm is used in order to solve
numerically the point mass flight dynamics model of the AA projectile
with a fixed time-step

(8.33)

For each specified intercept time , the time of flight  has

been computed, implying that the firing time is , 

.

In addition, the inertial azimuth and elevation angles of the FC
vector have been computed, , , 

. The dimensions of the AAT are  m, 

 m,  m,  m. The radius of the

TBS is  m, and the finer fixed time-step used within the TBS is 

 s. Hereafter, the following notations are used.

1.  is the difference between the specified intercept time

of the AA projectile with the CM of the AAT and the impact time of
the AA projectile with the body of the AAT.

 



2.
 is the distance from the CM of the AAT to the impact

point of the AA projectile on the body of the AAT.

 

The computed results are analyzed with respect to the following
main cases. Firstly, the case where the AAT is furthest away from the
mobile ADS and secondly, the case where the AAT is closest to the
mobile ADS.

When the AAT is furthest from the mobile ADS, that is, for , 

,  m, then the following can be seen from

Figs. 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7.

1.
The maximum value of  is approximately 1.5 ms,

occurs at , and  s,  m, see Fig.

8.2.

 

2.
The maximum value of  is 0.9 m, occurs at ,

and  s,  m, see Fig. 8.3.

 

3.
The AA projectile impacts the body of the AAT on the left side and
towards the front of the cylindrical section, see Figs. 8.4, 8.5, 8.6
and 8.7.

 

4.
The velocity vector of the AA projectile on impact with the body of
the AAT is almost horizontal having a small positive inertial
elevation angle, see Figs. 8.6 and 8.7.

 

When the AAT is in the vicinity of the closest point of approach to
the mobile ADS, that is, for ,  s, 



 m (Chap. 7), then the following can be seen from

Figs. 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7.

1.
The minimum value of  is 0.159 ms, occurs at 

, and  s,  m, see Fig. 8.2.

 

2.
The minimum value of  is 0.15 m, occurs at ,

and  s,  m, see Fig. 8.3.

 

3.
The AA projectile impacts the body of the AAT on the left side and
at a point that is quite close to the CM of the AAT, see Figs. 8.4, 8.5,
8.6 and 8.7.

 

4.
The velocity vector of the AA projectile on impact with the body of
the AAT has a visibly greater inertial elevation angle than the case
above, see Figs. 8.6 and 8.7.

 



Fig. 8.2 Plot of  versus the intercept time , : vehicle body of

mobile ADS is stationary



Fig. 8.3 Plot of  versus the intercept time , : vehicle body

of mobile ADS is stationary



Fig. 8.4 Plot of the co-ordinates of the impact point of the AA projectile on the body of the AAT, 
 versus , as observed when looking in the direction of the negative 

 axis, for : vehicle body of mobile ADS is stationary

Fig. 8.5 Plot of the co-ordinates of the impact point of the AA projectile on the body of the AAT, 
 versus , as observed when looking in the direction of the positive 



 axis, for : vehicle body of mobile ADS is stationary

Fig. 8.6 Plot of the co-ordinates  versus  of the trajectory of the AA

projectile just before impact with the body of the AAT, , as observed when

looking in the direction of the negative  axis, for : vehicle body of

mobile ADS is stationary



1

Fig. 8.7 Plot of the co-ordinates  versus  of the trajectory of the AA

projectile just before impact with the body of the AAT, , as observed when

looking in the direction of the positive  axis, for : vehicle body of

mobile ADS is stationary

Footnotes
Also referred to as the space of the half-sphere or the space of the cylinder.
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This Chapter deals with the computation of the probability that the AA
projectile will impact the body of the AAT as follows.

1.
Derivation of the stochastic model describing the dispersion of the
AA projectiles fired by the AA gun.

 
2.

Computation of the probability that the AA projectile fired at time 
 will impact any point on the body of the AAT, .

 

3.
The vulnerability model of the AAT assumes that if one or more AA
projectiles impact the body of the AAT then the AAT is destroyed
(Chap. 8). Thus, if one AA projectile is fired then the probability of
destroying the AAT is  ([40, 108, 142]).

 

4.
Computation of the probability that a burst of  AA projectiles

will destroy the AAT, and the accumulative probability that a burst
of  AA projectiles will destroy the AAT.

 

5. A verification method is applied in order to verify the

https://doi.org/10.1007/978-3-030-55498-9_9


computational method used to obtain .  

Fig. 9.1 Schematic of the mobile air defence system

9.1 Stochastic Model of the Dispersion of the
AA Projectiles Fired by the AA Gun
The stochastic model describing the dispersion of the AA projectiles
fired by the AA gun is derived by using the following assumptions and
methods.

1. The computational results as obtained in Chap. 7 for fire control
problem FCA for the case of a completely stationary vehicle body  



of the mobile ADS (Fig. 9.1) are employed. Thus, for each given
intercept time of the AA projectile with the CM of the AAT, ,

the following quantities have been computed for .

a.
The inertial azimuth and elevation angles of the FC vector 

, .
 

b.
The time of flight of the AA projectile to the CM of the AAT, 

.
 

c.
The firing time of the AA projectile is thus 

.
 

2.
In Chap. 7 the geometry of the AAT body has been ignored. The AA
projectile that is fired at time  travels over the time interval 

 until intercept with the CM of the AAT at time 

.
In Chap. 8, the geometry of the body of the AAT is taken into

account. Thus, the AA projectile will actually impact the body of
the AAT at some time  slightly before the intercept time with

the CM, .

In this Chapter, the geometry of the body of the AAT is also
taken into account. However, due to the fact that the initial
velocity of the AA projectile is a random vector, the AA projectile
will either miss the AAT or it will impact the body of the AAT. In
the latter case, there may be a possibility that the impact time will
be a little greater than . Thus, the trajectory of the AA

projectile is computed over an extended time horizon 
, .

 

3. Consider the AA projectile that is fired at time . If there are



no disturbances acting on the AA projectile at the firing time then
the generic firing velocity vector of the AA projectile 

is parallel to  and is given by ((6. 10))

(9.1)

Conceptually, the generic firing velocity vector of the AA projectile
 points from the muzzle of the AA gun (point M in Fig.

9.1) outwards. In the sequel, point M is alternatively referred to as
the muzzle M of the AA gun.

 

4.
Let , , be continuous random variables

denoting the azimuth and elevation error angles applicable to the
AA projectile that is fired at time . In order to simplify the

presentation, the following notation is used

(9.2)

In addition, define the random vector  as follows

(9.3)

It is assumed that the sequence of random vectors , 

, are stochastically independent and identically

distributed (IID) with the random vector .

 

5. The joint probability density function (PDF)  of the random vector
 is specified as follows

(9.4)

 



where  denotes the standard deviation  of the random

variable . The standard deviations of , , are bounded, (9.4),

implying that the second moments of , , are bounded. In

many practical applications the sample values or realizations of
the random vector  will be physically constrained to a bounded

set , and , , , 

.

6.
The motion trajectory of the AA projectile fired at time 

depends on the initial conditions. The initial conditions of the AA
projectile depend partly on the realization of the random vector 

 denoted by ,

(9.5)

where  denotes some element of the sample space  of the

random vector , and  (Chap. 4, [2], Chap. 2, [19, 67,

90, 97, 98, 135, 161, 165, 173, 184]).1 Note that in the case of 

the convention of using bold letters to denote vector and matrix
quantities is not applied.

 

7. The azimuth and elevation error angles, , , are used to

represent the effect of random disturbances on the generic firing
velocity vector of the AA projectile  as follows.

 



a. Rotate the body reference frame of the AA gun, , about the 

 axis through the azimuth error angle  .  
b.

Rotate the resulting reference frame  about the  axis

through the elevation error angle  , thus leading to a

reference frame , with unit vectors , , .

The origin of the reference frame  is fixed at the muzzle M

of the AA gun (Fig. 9.1).

 

c.
Thus, if there are disturbances acting on the AA projectile
then the generic firing velocity vector is no longer parallel to
the  axis of the AA gun reference frame , and thus no

longer parallel to the longitudinal axis of the AA gun.

 

d.
The generic firing velocity vector of the AA projectile is now
parallel to the  axis of reference frame  and is given

by

(9.6)

 

8.
The rotation matrix from the body reference frame  of the AA

gun to the reference frame  is given by (Appendix A)

(9.7)

 

9. It follows that the generic firing velocity vector of the AA
projectile expressed in reference frame  is given by

(9 8)

 



(9.8)

The generic firing velocity  expressed in the inertial

reference frame is given by ((6. 10))

(9.9)

If the azimuth and elevation error angles are zero, ,

then reference frame  is parallel to the body reference frame 

, and

(9.10)

10.
Since the generic firing velocity , (9.9), is a function of

the random vector , it follows from (6. 11), that the initial

velocity of the AA projectile is a function of the random vector .

 

11. Hence, the point mass flight dynamics model of the AA projectile,
(7. 19), is subject to random initial conditions that are a function
of the random vector   ([34, 127, 128, 165]), and is given by

(9.11)

(9.12)

In the literature, (9.11) is referred to as a random differential
equation ([34 127 128 165]) or as a crypto deterministic

 



equation ([34, 127, 128, 165]) or as a crypto-deterministic

system ([67, 165]). The initial conditions , 

, (9.12), are computed as follows.

12.
The initial position  is computed from (7. 21)–(7. 

23) and is given by

(9.13)

where

(9.14)

(9.15)

Based on the assumptions in Sect. 9.1, the random vector 

affects the initial velocity  but does not affect the

intitial position. Thus, the initial position  is

actually not a function of  ((9.13)–(9.15)).

 

The initial velocity  is computed from (7. 24) and



13.
e t a  e oc ty  s co puted o  ( . ) a d

(9.8)–(9.9), and is given by
(9.16)

(9.17)

It has been assumed above that the vehicle body of the mobile
ADS is stationary implying that , , 

(Fig. 9.1).

 

14.
It follows from (9.17), (9.9), (9.13), (9.12), that each element of
the initial conditions  is a smooth and bounded

function of trigonometric functions of the elements of the random
vector . Thus, by using (9.4), it follows that the second moment

and hence standard deviation of each element of the initial
conditions  is bounded.

 

15. Using the same approach as in [34], and given k, consider a
realization , (9.5). Then it follows that the point mass flight

dynamics model is subject to deterministic initial conditions that
are a function of  ((9.11)–(9.12), and [34, 128, 165]), and is

 



given by

(9.18)

(9.19)

This work deals with the case where the initial value
problem (9.18) has a unique solution   that satisfies

the following equation ([34, 119, 128, 165])

(9.20)

16. Furthermore, this work deals with the case where the point mass
flight dynamics model subject to random initial conditions, (9.11),
(9.12), has a unique mean square solution   that

satisfies the following equation ([34, 127, 128, 165])2

(9.21)

where  is a function of , (9.21) ([165]),

(9.22)

and where for each , (9.5), the realization of the random

process  is equal to the deterministic motion

 



trajectory of the AA projectile (9.20), that is,

(9.23)

17.
For each k and for each time , 

 is a random vector in  that is a function of the

random vector , (9.22) ([165]). However, there is no closed-

form expressionavailable for the random vector 

nor for its joint PDF, in terms of , ,  and other given

parameters.

 

18.
The second moment and thus standard deviation of each element
of the random vector , is bounded ([34, 128, 165])

(9.24)

 

19. A fixed time  is added to the specified intercept time . The

value of  is chosen by taking the following into account.

a.
It is assumed that for any given realization , the AA

projectile will either miss the AAT, or it will impact the body
of the AAT within the time interval . Thus,

it is assumed that the probability that the AA projectile will
impact the body of the AAT after the time  is 0.

 

b.
In order to reduce computation time, and considering the
relative speed of the AA projectile and the engagement

 

 



scenario used in Chaps. 7 and 8, it was found that 
.

9.1.1 Remarks on Applications of Stochastic Optimal
Control
The formulation and numerical solution of problems dealing with the
stochastic optimal controland state estimation of nonlinear dynamic
systems subject to random initial conditions, white state noise and
white measurement noise, and subject to complicated performance
requirements, control constraints and state constraints, are presented
in [52, 97, 98, 187–209].

Stochastic optimal control problems involve the numerical solution
of the Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE) for the optimal objective function and optimal feedback control
function on a discretized set or grid in  (where  number of state

variables in the dynamic model of the system). The HJB PDE represents
sufficient conditions for the optimal objective function and optimal
feedback control function ([52, 97, 98]).

The HJB PDE is discretized by using a unique numerical
approximation method developed by Prof. Harold J. Kushner, Division of
Applied Mathematics, Brown University, USA ([97, 98]). Convergence of
the above-mentioned numerical approximations is proved via the
probabilistic methods of weak convergence theory ([98]).

If each state variable is discretized into  values then the grid in 

consists of a total of  points. Taking into account the boundary

conditions, this results in a potentially large number (somewhat less
than ) of nonlinear equations that have to be solved iteratively for an

equal number of unknowns representing the values of the optimal
objective function on the grid. Thus, a potentially large scale scientific
computing problem must be solved (for example, , , ,

, etc).



The numerical solution of the HJB PDE yields approximations of the
optimal objective function and the optimal feedback control function or
strategy on the chosen grid in . Practically, the computed optimal

feedback control strategy is difficult to implement.
Prof. Yavin developed a methodology whereby the above-mentioned

computational framework is applied in order to systematically evaluate
the performance of a given feedback control strategy relative to the
optimal feedback control strategy for all initial conditions of the system
on the chosen grid in  (for advanced applications see the research

monographs [192, 193]).
Assume that the given feedback control strategy has been

determined by some method, for example, based on
experience/knowledge of the system, and that it is relatively
straightforward to implement. An approximation of the suboptimal
objective function for the given feedback control strategy is computed
by solving the relevant functional PDE on the same grid in  (using

the above-mentioned numerical approximation method).
If the computed suboptimal objective function is sufficiently close to

the optimal objective function (as defined by a suitable measure) then
the given feedback control strategy is a candidate for controlling the
system. In some cases the suboptimal objective function is very close or
almost identical to the optimal objective function.

The research collaboration with Prof. Yavin in this field includes the
following applications.

1.
Optimal feedback control strategies and parameter selection for an
electromagnetic actuator ([200]).

 
2.

Optimal and suboptimal feedback guidance and control strategies
for a projectile ([201, 202, 206]).

 
3. Optimal and suboptimal feedback control strategies for

manufacturing systems consisting of networks of finite capacity
buffers, flexible manufacturing systems (FMSs), dedicated
manufacturing machines, assembly machines, and finite capacity
inventories ([203–205, 209]). The manufacturing systems are
modelled by using continuous time Markov chains The optimal

 



modelled by using continuous time Markov chains. The optimal
objective function and the optimal feedback control strategy are
obtained by solving a HJB differential difference type equation
([20]).

4.
Optimal and suboptimal feedback control strategies for a nonlinear
discrete-time stochastic state space model of a manufacturing
system ([57]). The optimal objective function and optimal feedback
control strategy are obtained by solving the Bellman dynamic
programming equation ([17, 100, 163]).

 

9.2 Computation of the Probability that the AA
Projectile Will Impact the Body of the
Attacking Aerial Target, 

A methodology is presented for computing the probability that the AA
projectile will impact the body of the attacking aerial target, , for

any given intercept time , .

Fig. 9.2 Schematic of attacking aerial target



Consider the AA projectile that is fired at time . The variables

given below are formally defined for time t in the continuous interval

(9.25)

The position vector of the AA projectile relative to the CM of the AAT at
time t is given by ((9.22))

(9.26)

This vector is expressed in the body reference frame  as follows

((8. 12))

(9.27)

In order to simplify the presentation,  is replaced by k and the

superscript  is suppressed as follows

(9.28)

For a given realization , (9.5), the computational procedure given

in Sect. 8. 3 is applied by taking the following into account.

1.
All the relevant variables are computed at discrete times in the
following set ((6. 59))

(9.29)

 

2. If the AA projectile impacts the TBS then all the relevant variables
are computed at discrete times in the following set ((6. 59))

(9.30)

 



3.
The AA projectile either impacts the body of the AAT or it does not
impact the body of the AAT as follows.

a.
The AA projectile impacts the body of the AAT if it impacts the
TBS and thereafter impacts the body of the AAT.

 
b.

The AA projectile does not impact the body of the AAT if it does
not impact the TBS or if it impacts the TBS and thereafter does
not impact the body of the AAT.

 

 

Thus, the methods in Sect. 8. 3 are used together with (9.29), (9.30),
in order to determine if and at what point the AA projectile will impact
the body of the AAT. In order to compute the probability that the AA
projectile will impact the body of the AAT the following approach is
applied.

Define the set  as follows

(9.31)

Thus, if the AA projectile does not impact the body of the AAT then 
 while if it does impact the body of the AAT then . It

has been assumed above that the probability that the AA projectile will
impact the body of the AAT after the time  is 0.

Define the impact time of the AA projectile with the body of the AAT,
, as follows ([98, 161, 184])

(9.32)

The stopping time  is defined as follows ([98])

(9.33)



Given a realization , (9.5). The resulting realizations of the

random quantities in (9.31)–(9.33) are described as follows.

1.
If the AA projectile impacts the body of the AAT then the set 

 is not empty otherwise it is empty.
 

2.
If the AA projectile impacts the body of the AAT then 

is the first time  that .

The time  is computed by using the methods

presented in Sect. 8. 3.

 

3.
If the AA projectile does not impact the body of the AAT then the
stopping time is . If the AA projectile

does impact the body of the AAT then the stopping time is 
  . At the stopping time ,

the motion trajectories of the AA projectile and the AAT are
stopped.

 

4.
If the AA projectile impacts the body of the AAT then  

  . If the AA projectile does not

impact the body of the AAT then    

.

 

For a given k,  is a random vector in  that is a

function of the random vector . However, there is no closed-form



expression available for  nor for its joint PDF, in

terms of  and other given parameters.

Define the function Ind as follows ([161, 165, 184])

(9.34)

Define the following set ((9.34)),

(9.35)

It is assumed that the set  represents a solid region in 

without any openings or holes ([105]). Chapter 8 deals with the case
where there are no disturbances acting on the AA projectile, that is, the
azimuth and elevation error angles are always zero,  for all 

. For this case, the AA projectile impacts the body of the

AAT, that is, , (9.34), for all . It follows

that the point , (9.35), .

By using (9.4), (9.31)–(9.34), (9.35), the probability that the AA
projectile fired at time  will impact the body of the AAT is equal to

the expected value of the function Ind, (9.34), as follows ([2, 67, 83,
161, 171, 184])

(9.36)



(9.37)

where E( ) denotes the expected value of the random variable . In

(9.36), the variables  and  are associated with the random

variables  and , and represent the azimuth and elevation error

angles, respectively. Thus, the units of  and  are radians (rad).

Based on the vulnerability model of the AAT (Chap. 8), if one or
more AA projectiles impact any point on the body of the AAT then the
AAT is destroyed. Thus, if one AA projectile is fired then the probability
of destroying the AAT, also referred to as the kill probability ([40]), is
given by

(9.38)

There are no closed-form expressionsavailable for , Ind, , 

,  and  in terms of  and other given parameters.

Thus, the probability  cannot be computed directly by using

(9.37). The approach used in this work is to first find a bounding set



 that is a subset of  and that includes all the elements of the set

, (9.35), as follows

(9.39)

where  denotes the set of all the elements in  that

are not in . It follows from (9.34)–(9.35), (9.39), that

(9.40)

In this work, the bounding set  is assumed to be a box or

rectangle centered at the origin. By using  and (9.34)–(9.40), the

probability  is computed as follows

(9.41)



(9.42)

In the following Sections, computational methods NM1 and NM2 are
presented for computing increasingly tighter bounding sets  and 

, respectively, for the set . The sets  and  are

used separately in the place of  as domains of integration in the

numerical computation of the double integralin (9.42), thus yielding
approximations of the probability  in each case.

9.3 Computational Method NM1 for the
Computation of 

Computational method NM1 computes  and is summarized as

follows.

1.
Given the intercept time , that is, given k.  

2. Let  denote the line-of-intercept (LOI) vector, that is,

the inertial vector pointing from the hinge point H of the AA gun
at time  (Fig. 9.1) to the center of mass of the AAT at time 

, and given by

(9.43)

 



In the case considered here, the vehicle body of the ADS is
completely stationary implying that . Thus,

in this case, the LOI vector equals the LOS vector at time , 

, (2. 148).

3.
For each k, an appropriate bounding set  for the set ,

(9.35), is computed,

(9.44)

Note that the basic assumption, (7. 60), applies throughout. The
set  is used as domain of integration for the double integral

in (9.42).

 

4. The bounding set  has a rectangular shape as follows

(9.45)

where the bounds , , are computed such that (9.44)

holds. In this work the bounds in (9.45) are computed as follows

(9.46)

where  is the radius of a sphere with center fixed to the CM of

the AAT. This sphere is referred to as the integration limits
bounding sphere (ILBS). The radius  is selected such that the

ILBS is somewhat larger than the sphere that just encloses the
AAT. It was found that for the AAT considered here, the resulting
bounding set  satisfies (9.44) (see computational results).

 



5.
Thus, by using (9.44), (9.42), the probability , (9.36), is given

by

(9.47)

In principle, a suitable numerical integration algorithm, for
example, adaptive quadrature ([43, 72, 92, 110]), can be applied
in order to compute the double integral in (9.47). However, in the
numerical computation of the double integral it was found that
the direct computation of the function  for any

given  leads to a lengthy total computation time. The

computation time is substantially reduced by pre-computing and
storing the function  for all vectors 

that belong to a discretized version of the set .

 

6. The bounding set  is discretized into a set  as follows

(9.48)

where

(9.49)

and where  and  are the specified number of

discretization points for the intervals  and 

i l

 



, respectively.

7.
Thus, for each vector  in the discrete set , the

function value , (9.34), is computed by using the

methods presented in Sect. 8. 3. The pair of values  is stored

in the set  as follows

(9.50)

 

8.
For any , the function value  in

(9.47) is computed by applying two-dimensional linear
interpolation using the values stored in the set , (9.50) ([43,

110]).

 

9.
Let  denote the subset of  for which the function 

 is equal to 1,

(9.51)

The ratio of the number of points in the set  to the total

number of points  , expressed as a

percentage, is as follows

(9.52)

 

10. The slender cylindrical-type shape of the AAT versus the spherical
shape and size of the enclosing ILBS leads to the following. The
function , (9.34), is equal to 1 for a small fraction of the

 



points in the discrete set , and is equal to 0 for the

majority of the points in . The result is that a low value is

obtained for . This problem is addressed by computational

method NM2.

9.4 Computational Method NM2 for the
Computation of 

Computational method NM2 computes  by employing the results

of computational method NM1 and is summarized as follows.

1.
Compute the minimum and maximum values of the  element and

of the  element of all the vectors ,

(9.53)

(9.54)

(9.55)

(9.56)

 

2. The symmetrical bounds  and  on the variables  and 

, respectively, are obtained as follows

(9.57)

(9.58)

 



where , , are as obtained by using computational method

NM1, (9.49), and ,  are integers used to set the bounds on

the variables  and , (9.59). The bounding set  is given by

(9.59)

The integers ,  are chosen such that a part of the region in 

 where  is included in the bounding set 

. It follows that the set  has generally tighter bounds on the

variables  and  than the bounding set , and that

(9.60)

3.
Thus, by using (9.60), (9.42), the probability , (9.36), is given

by

(9.61)

 

4. The number of discretization points  and  for

the intervals  and , respectively, are

computed as follows

(9.62)

(9.63)

where  is the total number of discretization points that was

 



originally specified for numerical method NM1,

(9.64)

ceil  is given by (5. 50), and

(9.65)

5.
The set  is the discretized version of the bounding set 

 as follows

(9.66)

where

(9.67)

and where  is obtained from (9.62), and  is

obtained from (9.63).

 

6.
Thus, for each vector  in the discrete set ,

(9.66), the function value , (9.34), is computed by

using the methods presented in Sect. 8. 3. The pair of values  is

stored in the set  as follows

(9.68)

 

7. For any , the function value  in

(9 61) is computed by applying two-dimensional linear
 



(9.61) is computed by applying two dimensional linear
interpolation using the values stored in the set  ([43, 110]).

8.
Let  denote the subset of  for which the function 

 is equal to 1,

(9.69)

The ratio of the number of points in the set  to the total

number of points  , expressed as a

percentage, is as follows

(9.70)

 

9.5 Probability of Destroying the AAT for the
Case Where a Burst of AA Projectiles is Fired
   

Assume that a burst of  AA projectiles is fired instantaneously

against the AAT at time . The probability that i out of  AA

projectiles will impact the body of the AAT is computed for 
, using the following assumptions and methods.

1. At each of  predefined times , , the AA gun

fires a burst of  AA projectiles instantaneously where the index 

,

(9.71)

 



At times , , the AA gun does not fire any AA

projectiles.
2.

It is further assumed that the  AA projectiles fired in a burst at

time  are stochastically independent, and that the probability

that any given AA projectile will impact the body of the AAT is the
same, that is, , , (9.37).

 

3.
Let  denote the number of AA projectiles that impact the body

of the AAT out of the burst of  projectiles fired at time , 

. Then, it follows that the random variable  has a

binomialprobability mass function (PMF) given by

(9.72)

where

(9.73)

 

4.
The probability of destroying the AAT for the case where a burst of 

 AA projectiles is fired at time  is given by

(9.74)

 

5. The discrete random variable  takes on the following

consecutive integer values, , for each .

Let  denote the whole PMF of the random variable  and

 



let  denote the probability that , as follows ((9.72))

(9.75)

(9.76)

6.
It is convenient to represent each PMF , , as a

row vector in  as follows

(9.77)

 

7.
It follows from the above that the sequence of random variables 

, , are stochastically independent but not

identically distributed (pp. 122–125, [136, 139]). In addition, the
random variable  is stochastically independent with respect to

the sum of the previous  random variables, 

 (pp. 122–125, [136, 139]).

 

9.6 Accumulative Probability of Destroying
the AAT for the Case Where a Burst of AA
Projectiles is Fired
 

Given that the AA gun fires a burst of  projectiles at each time 

, , starting with . Intuitively, the probability

of destroying the AAT after  bursts of  AA projectiles each have



been fired, should increase or accumulate as the index  increases, 

. This probability is called the accumulative probability

of destroying the AAT and is computed by using the following
assumptions and methods.

1.
Let  be a random variable denoting the sum total of the AA

projectiles that have impacted the body of the AAT after  bursts of

 AA projectiles each have been fired, as follows

(9.78)

where .

 

2.
The discrete random variable  takes on the following

consecutive integer values 0, 1, 2, ..., , for each ,..., .

Since  bursts of  AA projectiles each have been fired, it follows

that the maximum possible value of  is .

 

3.
Let  denote the whole PMF of the random variable  and

let  denote the probability that , as follows

(9.79)

(9.80)

 

4. It is convenient to represent each PMF , , as a

row vector in  as follows ((9.80))
 



(9.81)

The method used to compute each PMF , , is

given below.
5.

By using the facts given in point 7, Sect. 9.5, it can be shown (pp.
122–125, [136, 139]) that since the sequence of random variables 

, , are stochastically independent, the PMF of  is

the convolution of the individual PMFs, , , as

follows

(9.82)

where , , (9.77), 

, (9.81), , and where 

denotes the convolution of two finite row vectors  and 

, and  ([136, 139]).

 

6.
Practically, (9.82) is implemented by applying the following
recursive equation (point 7, Sect. 9.5)

(9.83)

 

7. Thus, the accumulative probability of destroying the AAT after 

bursts of  AA projectiles each have been fired, is given by
 



(9.84)

9.7 Computational Results
The numerical solution of fire control problem FCA for the case of a
completely stationary vehicle body of the mobile ADS is employed
(Sect. 7. 4). Some of the relevant data is repeated here for convenience.

The initial and final times are given by

(9.85)

The sequence of intercept times is equally spaced and is given by

(9.86)

Thus, the set of specified intercept times (in seconds) is given by

(9.87)

For each specified intercept time , the time of flight  has

been computed implying that the firing time is , 

. In addition, the inertial azimuth and elevation

angles of the FC vector have been computed, , , 

. A fourth order Runge-Kutta algorithm is used in

order to solve numerically the point mass flight dynamics model of the
AA projectile, with a fixed time-step

(9.88)

The dimensions of the AAT are given in Sect. 8. 5 and are repeated here
for convenience. The dimensions of the AAT are  m, 



 m,  m,  m (Fig. 9.2). In this

case, the radius of the TBS is  m, the finer fixed time-step used

within the TBS is  s, and  s.

It is assumed that the azimuth and elevation error angles are
stochastically independent and that they each have a Gaussian PDF as
follows ([136, 139])

(9.89)

(9.90)

where

(9.91)

(9.92)

(9.93)

The double integrals in computational methods NM1 and NM2 are
computed numerically by applying the MATLAB functions dblquad,
quadgk that implement adaptive quadrature using the Gauss-Kronrod
rules (see for example [92]), with an absolute error tolerance of 

([110]). Hereafter, the above-mentioned algorithm is referred to as the
AQUADGK algorithm.

In addition, the following data and parameter values are employed.

1. The probability that the AA projectile will impact the body of the
AAT, , is computed for every fourth value of the time index k,

that is,  as follows

(9.94)

 



The associated set of intercept times  (in seconds) is given by

(9.95)

2.
The radius of the ILBS is  m.  

3.
For computational method NM1, the number of discretization
points for the variables  and  are  and 

, respectively. Thus, the total number of points in the

set  is .

 

4.
The integers used in computational method NM2 are , 

.

 

5.
The number of AA projectiles fired in each burst is .  

6.
A burst of  AA projectiles is fired instantaneously at each time 

 with index  given by

(9.96)

The associated set of intercept times  (in seconds) is given by

(9.97)

 



A plot of the LOS distance  versus  is shown in Fig.

9.3. Most of the results are plotted against the intercept time  and

some are also plotted against the LOS distance .

The probability that the AA projectile will impact the body of the
AAT, , is computed by using computational method NM2. Note

that computational method NM2 employs the results of computational
method NM1.

The computed values are given in Table 9.1, and plotted versus 
 and versus  in Figs. 9.4 and 9.5, respectively. It can be

seen that the probability  gradually increases as the AAT

approaches the mobile ADS, and reaches its maximum value when the
AAT is approximately at the CPA (Chap. 7).

Plots of some of the variables used in computational methods NM1
and NM2 versus , namely, , , are shown in Fig. 9.6, 

, , are shown in Fig. 9.7, , is

shown in Fig. 9.8, and , , and ,

are shown in Fig. 9.9.
In addition, contour plots of the function , for

computational method NM1, where , ,

and computational method NM2, where , 

, are shown in Fig. 9.10 and Fig. 9.11, respectively.

For the case where the AA gun fires bursts of  projectiles

against the AAT, the probability of destroying the AAT, , where 

, is significantly higher than for the case where



one AA projectile is fired, , , see Table 9.2 and

the plots shown in Figs. 9.12 and 9.13.
The accumulative probability of destroying the AAT, , where 

, , increases as expected

with increasing values of , see Table 9.3 and the plots shown in Figs.

9.14 and 9.15.

Fig. 9.3 Plot of  versus the intercept time , 

Table 9.1 Table of values of the probability that an AA projectile will impact the body of the
AAT, , the intercept time , LOS distance , , (9.94)



k  (s)  (m)k  (s)  (m)

1 0.00 4010.86 0.002460

5 0.80 3819.03 0.002888

9 1.60 3628.17 0.003413

13 2.40 3438.45 0.004031

17 3.20 3250.06 0.004825

21 4.00 3063.24 0.005834

25 4.80 2878.31 0.007023

29 5.60 2695.65 0.008598

33 6.40 2515.76 0.010586

37 7.20 2339.27 0.013196

41 8.00 2167.02 0.016588

45 8.80 2000.10 0.020895

49 9.60 1839.96 0.026777

53 10.40 1688.54 0.034131

57 11.20 1548.39 0.043521

61 12.00 1422.86 0.054455

65 12.80 1316.11 0.066460

69 13.60 1233.05 0.077563

73 14.40 1178.70 0.086588

77 15.20 1157.11 0.090758

81 16.00 1170.08 0.090493

85 16.80 1216.53 0.085914

89 17.60 1292.83 0.078658

93 18.40 1394.11 0.069307

97 19.20 1515.35 0.059449

101 20.00 1652.18 0.050083



Fig. 9.4 Plot of  versus the intercept time , 



Fig. 9.5 Plot of  versus , 



Fig. 9.6 Plot of , (o), , (*), for computational method NM2, and , (x), for

computational method NM1, versus the intercept time , 



Fig. 9.7 Plot of , (o), and , (x), versus the intercept time , 



Fig. 9.8 Plot of  versus the intercept time , 



Fig. 9.9 Plot of , (x), and , (*), for computational method NM2, and 

, (o), for computational method NM1, versus the intercept time , 



Fig. 9.10 Contour plot of the function , for computational method NM1, 

, ; Ind  for  inside the enclosed region around the origin,

and Ind  for  outside this region



Fig. 9.11 Contour plot of the function , for computational method NM2, 

, ; Ind  for  inside the enclosed region around the origin,

and Ind  for  outside this region

Table 9.2 Table of values of the probability that at least one AA projectile out of a burst of 

AA projectiles will impact the body of the AAT, , the intercept time , LOS

distance , , (9.94)

k  (s)  (m)

1 0.00 4010.86 0.036277

5 0.80 3819.03 0.042455



k  (s)  (m)

9 1.60 3628.17 0.049983

13 2.40 3438.45 0.058789

17 3.20 3250.06 0.069974

21 4.00 3063.24 0.084022

25 4.80 2878.31 0.100320

29 5.60 2695.65 0.121492

33 6.40 2515.76 0.147541

37 7.20 2339.27 0.180659

41 8.00 2167.02 0.221907

45 8.80 2000.10 0.271485

49 9.60 1839.96 0.334446

53 10.40 1688.54 0.406020

57 11.20 1548.39 0.486981

61 12.00 1422.86 0.568251

65 12.80 1316.11 0.643555

69 13.60 1233.05 0.702112

73 14.40 1178.70 0.742960

77 15.20 1157.11 0.760011

81 16.00 1170.08 0.758958

85 16.80 1216.53 0.740099

89 17.60 1292.83 0.707376

93 18.40 1394.11 0.659516

97 19.20 1515.35 0.601218

101 20.00 1652.18 0.537317



Fig. 9.12 Plot of  versus the intercept time , , (x), , (o)



Fig. 9.13 Plot of  versus , , (x), , (o)

Table 9.3 Table of values of the probability that at least one AA projectile will impact the body
of the AAT after  bursts of  AA projectiles each have been fired, , the

intercept time , LOS distance , for , (9.96)

 (s)  (m)

1 1 0.00 4010.86 0.036277

2 17 3.20 3250.06 0.103713

3 33 6.40 2515.76 0.235953

4 49 9.60 1839.96 0.491485

5 65 12.80 1316.11 0.818742

6 81 16.00 1170.08 0.956309



 (s)  (m)

7 101 20.00 1652.18 0.979785

Fig. 9.14 Plot of  versus the intercept time , 



Fig. 9.15 Plot of  versus , 

9.8 Verification Method VMB for the
Computation of the Probability 

Verification method VMB ([132]) proposes a special engagement
scenario whereby the mobile ADS fires an ideal AA projectile at time 

 against a stationary target k that has the shape of a sphere. The

ideal AA projectile is assumed to travel at a constant speed and in a
straight line.3 In the sequel, target k is referred to as stationary
sphere k.

Using the assumptions of the special engagement scenario,
expressions are derived for a number of quantities. The afore-



mentioned expressions facilitate the direct and accurate computation of
the probability that the ideal AA projectile will impact the body of
stationary sphere k, denoted by . The value  is compared

with , that is, the probability that the ideal AA projectile will

impact the body of stationary sphere k as obtained by applying
computational method NM2 to the special engagement scenario, for 

.

The CM of a uniform stationary sphere k with radius  is fixed

at each specified inertial position of the original AAT denoted by 

((7. 12)). Thus, at each time , (9.25), the inertial position and

velocity of stationary sphere k, denoted by  and ,

respectively, are given by

(9.98)

The body reference frame , (8. 15), is fixed at the CM of stationary

sphere k, and the  axis points in the direction of the constant

forward velocity vector of the original AAT that is moving in a straight
line (Fig. 9.2, Fig. 7.2, Sect. 7. 3).

At time  the AA gun is aimed at the CM of

stationary sphere k and fires an ideal AA projectile. It follows that at
time  the AA gun is aligned with the LOS vector , (2. 

148), and that the inertial angles of the fire control vector (Chap. 7) are
in this case equal to the inertial angles of the LOS vector, , (2. 

153)–(2. 154), as follows

(9.99)



where

(9.100)

The vector from the muzzle M of the AA gun to the CM of stationary
sphere k is denoted by  and is given by

(9.101)

It follows from the above that the inertial angles of  are

identical to  and .

In the computation of , , in Chap. 7, it is assumed that

the azimuth and elevation error angles are zero, . Hence,

the ideal AA projectile travels along a straight line from the muzzle M of
the AA gun to the CM of stationary sphere k in a time , and at an

assumed constant speed . Since the ideal AA projectile covers a

distance  in a time  it follows that the constant speed 

 is given by

(9.102)

The straight line path of the ideal AA projectile is parallel to the
longitudinal axis of the AA gun, that is, the line from the hinge point H
to the muzzle M of the AA gun (Fig. 9.1).

With regard to the application of computational method NM2 to the
special engagement scenario, the following assumptions and methods
are employed.

1. The set  associated with the AAT in Sect. 9.2 is replaced by the

set  associated with stationary sphere k with radius 

and given by ((8. 9))

 



(9.103)

(9.104)

2.
The generic firing velocity vector of the ideal AA projectile
expressed in body reference frame  is given by ((9.8), (9.102))

(9.105)

As mentioned earlier in this Chapter, conceptually, the vector 
 points from the muzzle M of the AA gun outwards.

 

3.
The point mass flight dynamics model of the ideal AA projectile is
subject to random initial conditions that are a function of the
random vector , and is given by ((9.11)–(9.17))

(9.106)

(9.107)

where the initial conditions are obtained as follows.

 

4. The initial position  is given by

(9.108)

where

 



e e
(9.109)

(9.110)

5.
The initial velocity  is given by ((9.105), (9.102))

(9.111)

(9.112)

 

In the derivation of an expression for  the following

assumptions and methods are applied.

1. With reference to the generic firing velocity vector ,

(9.105), it follows that the actual direction of flight of the ideal AA
projectile depends on the realization , (9.5). Thus, in order

to simplify the presentation let  be a vector denoting the

realization  as follows

 



(9.113)

2.
Let  denote a unit vector in the direction of the realization of 

 expressed in body reference frame  and given by

((9.105), (9.113))

(9.114)

Conceptually, the unit vector  points from the muzzle M of the

AA gun outwards.

 

3.
In this work, the feasible values of  are constrained to the set 

 centered at the origin and given by

(9.115)

 

4. The angle between the unit vector  and the  axis is

denoted by  and is given by the following relation ((9.114))

(9.116)

(9.117)

It follows that the RHS of (9.117) is positive for all  and

that the angle  is computed from (9.117) as follows

(9.118)

 



With reference to (9.118), it is assumed that  lies in the

interval ,

(9.119)

In addition, it follows from (9.117) that

(9.120)

5.
An expression needs to be derived for the set ,

(9.129), such that if  lies in the set  then the ideal AA

projectile fired at time  will impact the body of stationary

sphere k. If the value of  does not lie in the set  then the

ideal AA projectile fired at time  will not impact the body of

stationary sphere k.

 

6.
With reference to Fig. 9.1, consider a plane VP  at time  that

is vertical to the inertial (X, Y) plane and that includes the 
 plane of the body reference frame  fixed to point G,

the center of mass of the AA gun (Fig. 9.16). Given that the 

axis coincides with the line from the hinge point H of the AA gun
to the CM of stationary sphere k (Fig. 9.16). It follows that the
vertical plane VP  also passes through the CM of stationary

sphere k. The cross-sections of the AA gun and stationary sphere k
that lie on vertical plane VP  are shown in Fig. 9.16.

 

7. Consider a cone CN  with axis that coincides with the  axis

and with apex fixed at the muzzle M of the AA gun (Fig. 9.16). The
inner surface of the cone touches tangentially the surface of

f

 



stationary sphere k as shown in Fig. 9.16. The cone CN  has half-

cone angle  that is computed as follows

(9.121)

where . In many cases 

. The value of  depends on the positive

finite values  and . Thus, the value of  is

positive and lies in the interval ,

(9.122)

8.
Assume that . Then, it follows from (9.117) that 

takes on appropriate values such that the following relation is
satisfied

(9.123)

and implying that ((9.116), (9.120))

(9.124)

(9.125)

 

9. Thus, assume that  lies in the set , representing the

equality constraint (9.123), as follows

(9.126)

By using (9.114), (9.123)–(9.125), and standard trigonometric
identities, the following relations are derived for the elements of
the unit vector 

(9.127)

 



(9. )

(9.128)

It follows from (9.127)–(9.128) that the unit vector  lies on

the surface of cone CN  while its end-point touches a circle with

radius . The center of the circle is fixed on the  axis

at a distance  from the muzzle M of the AA gun

(towards the CM of stationary sphere k, Fig. 9.16). The plane of
the circle is perpendicular to the  axis. It follows that if

assumption 9 is satisfied then the direction of the realization of
the generic firing velocity vector , (9.105), is such that

the ideal AA projectile just impacts the body of stationary sphere
k.

10. Thus, the ideal AA projectile fired at time  will impact the

body of stationary sphere k if the angle  of the unit vector 

lies in the interval , that is, if  lies in the set 

 given by ((9.118))

(9 129)

 



(9.129)

Define the function Ind  as follows

(9.130)

Thus, the probability that the ideal AA projectile fired at time 
 will impact the body of stationary sphere k is equal to the

probability that  , and is given by

(9.131)

(9.132)

Following the procedure presented in Sect. 9.2, a bounding set 
 for the set  is employed, . The

bounding set  is a rectangle centered at the origin. Thus, the

probability  is computed as follows

(9.133)

11.
The computation of  is based on the application of

computational method NM2 (Sect. 9.4) to the special engagement
scenario.

 

12. The percentage difference between the probability  and the



probability , is given by

(9.134)

 

Fig. 9.16 Schematic of the AA gun engaging stationary sphere k

Two separate cases of the special engagement scenario are
considered as follows.

1. Case 1: Stationary spheres with different radii.
In this case the half-cone angle  is fixed for all k as follows 



(9.135)

By using (9.121), the radius  of stationary sphere k is

computed such that the constraint (9.135) is satisfied,

(9.136)

It follows from (9.135), (9.129), that the set  is fixed for all k,

(9.137)

where

(9.138)

The bounding set  is also fixed as follows

(9.139)

. Thus, the probability  is fixed and is given by

(9.140)

.

2. Case 2: Stationary spheres with identical radii.
In this case the radius  of stationary sphere k is constant

for all k as follows

(9.141)

The half-cone angle  is computed by using (9.121), that is,

(9.142)

 



The probability  is computed by using (9.133), for 

.

9.8.1 Computational Results
The data given in Sect. 9.7 is used with some extensions and additions
as specified below.

In the computation of  the following data is employed.

1.
For Case 2 (stationary spheres with identical radii) the bounding
set , (9.133), is given by

(9.143)

(9.144)

.

 

2.
For Case 1 (stationary spheres with different radii) the bounding
set , (9.139), is given by

(9.145)

(9.146)

 

In the application of computational method NM2 to compute ,

the following data is employed for Cases 1 and 2.



1. The parameter , (9.46), is replaced by  given by

(9.147)

 

2.
The radius of the TBS is  m.  
The double integrals in computational method NM2 and verification

method VMB are computed numerically by applying the MATLAB
functions dblquad, quadgk, implementing the AQUADGK algorithm
and using an absolute error tolerance of  ([110]).

In Case 1,   rad, , and each stationary

sphere has a different radius. Part of the computational results are
shown in Table 9.4. It can be seen that the absolute percentage
difference  lies approximately between 0.0022% and 0.091%

for all .

In Case 2,   m, , and each stationary

sphere has an identical radius. Part of the computational results are
shown in Table 9.5. It can be seen that the absolute percentage
difference  lies approximately between 0.0053% and 0.23% for

all .

Table 9.4 Verification method VMB, Case 1: Stationary spheres with different radii. Table of
values of k, the intercept time , , , , , , , 

 

k

(s) (m) (s) (rad) (m)

 (%)

1 0.00 4008.06 5.99701 0.001 4.00806 0.393609 0.393469 0.0354779

5 0.80 3816.23 5.48804 0.001 3.81623 0.393588 0.393469 0.0300678

9 1.60 3625.37 5.02039 0.001 3.62537 0.393564 0.393469 0.0241173

13 2.40 3435.65 4.58962 0.001 3.43565 0.393538 0.393469 0.0175474



k

(s) (m) (s) (rad) (m)

 (%)

17 3.20 3247.26 4.19193 0.001 3.24726 0.39351 0.393469 0.0102646

21 4.00 3060.44 3.8242 0.001 3.06044 0.393478 0.393469 0.00215824

25 4.80 2875.51 3.48377 0.001 2.87551 0.393442 0.393469 –
0.00690282

29 5.60 2692.85 3.16832 0.001 2.69285 0.393402 0.393469 –0.017073

33 6.40 2512.96 2.87592 0.001 2.51296 0.393357 0.393469 –0.0285326

37 7.20 2336.47 2.605 0.001 2.33647 0.393306 0.393469 –0.0414881

41 8.00 2164.22 2.3544 0.001 2.16422 0.393248 0.393469 –0.0561675

45 8.80 1997.3 2.12347 0.001 1.9973 0.393183 0.393469 –0.0728047

49 9.60 1837.16 1.91205 0.001 1.83716 0.393567 0.393469 0.0248002

53 10.40 1685.74 1.72056 0.001 1.68574 0.393484 0.393469 0.00372934

57 11.20 1545.59 1.55007 0.001 1.54559 0.393393 0.393469 –0.0194451

61 12.00 1420.06 1.4025 0.001 1.42006 0.393296 0.393469 –0.0440801

65 12.80 1313.31 1.28062 0.001 1.31331 0.393504 0.393469 0.00876414

69 13.60 1230.25 1.18798 0.001 1.23025 0.393112 0.393469 –0.0908504

73 14.40 1175.9 1.12835 0.001 1.1759 0.393658 0.393469 0.0479133

77 15.20 1154.31 1.10488 0.001 1.15431 0.393631 0.393469 0.0410609

81 16.00 1167.28 1.11897 0.001 1.16728 0.393647 0.393469 0.0452086

85 16.80 1213.73 1.16976 0.001 1.21373 0.393398 0.393469 –0.0181401

89 17.60 1290.03 1.25447 0.001 1.29003 0.393176 0.393469 –0.0746388

93 18.40 1391.31 1.36936 0.001 1.39131 0.393271 0.393469 –0.0503457

97 19.20 1512.55 1.51078 0.001 1.51255 0.393369 0.393469 –0.0255329

101 20.00 1649.38 1.67572 0.001 1.64938 0.393309 0.393469 –0.0406937

Table 9.5 Verification method VMB, Case 2: Stationary spheres with identical radii. Table of
values of k, the intercept time , , , , , , , 

 

k

(s) (m) (s)

 (rad)

(m)

 (%)

1 0.00 4008.06 5.99701 0.000249497 1 0.0306145 0.0306451 –0.0998415

5 0.80 3816.23 5.48804 0.000262039 1 0.0337637 0.0337495 0.0420494



1

k

(s) (m) (s)

 (rad)

(m)

 (%)

9 1.60 3625.37 5.02039 0.000275834 1 0.0373404 0.0373276 0.0343698

13 2.40 3435.65 4.58962 0.000291066 1 0.0414857 0.041475 0.0259201

17 3.20 3247.26 4.19193 0.000307952 1 0.0462499 0.0463106 –0.131048

21 4.00 3060.44 3.8242 0.00032675 1 0.0519862 0.051983 0.00625438

25 4.80 2875.51 3.48377 0.000347764 1 0.0586749 0.058678 –
0.00522186

29 5.60 2692.85 3.16832 0.000371353 1 0.066519 0.0666282 –0.163994

33 6.40 2512.96 2.87592 0.000397937 1 0.0760991 0.0761236 –0.0322653

37 7.20 2336.47 2.605 0.000427996 1 0.0873526 0.0875211 –0.192485

41 8.00 2164.22 2.3544 0.00046206 1 0.101183 0.10125 –0.0659867

45 8.80 1997.3 2.12347 0.000500676 1 0.117701 0.117802 –0.0857436

49 9.60 1837.16 1.91205 0.000544317 1 0.137542 0.13769 –0.107521

53 10.40 1685.74 1.72056 0.00059321 1 0.161351 0.16134 0.00692177

57 11.20 1545.59 1.55007 0.000647 1 0.188557 0.188852 –0.156135

61 12.00 1420.06 1.4025 0.000704198 1 0.219201 0.219599 –0.181413

65 12.80 1313.31 1.28062 0.000761434 1 0.251356 0.251655 –0.118564

69 13.60 1230.25 1.18798 0.00081284 1 0.281054 0.281331 –0.098449

73 14.40 1175.9 1.12835 0.000850411 1 0.303598 0.303438 0.0524141

77 15.20 1154.31 1.10488 0.000866321 1 0.313026 0.312887 0.0446287

81 16.00 1167.28 1.11897 0.00085669 1 0.307314 0.307162 0.049328

85 16.80 1213.73 1.16976 0.00082391 1 0.28715 0.287812 –0.229925

89 17.60 1290.03 1.25447 0.000775175 1 0.259301 0.259514 –0.081798

93 18.40 1391.31 1.36936 0.000718748 1 0.22751 0.227636 –0.0553723

97 19.20 1512.55 1.51078 0.000661133 1 0.196262 0.196316 –0.0274719

101 20.00 1649.38 1.67572 0.000606288 1 0.167661 0.167892 –0.137332

Footnotes
An alternative notation is to use upper-case letters to denote random variables or random

vectors (for example, Y, ) and the corresponding lower-case letters to denote the realizations
of the random variables or random vectors (for example, , ), [83, 121, 136,

139, 148, 157, 171].



2

3

 
The formal verification of the conditions for this result would, in principle, follow a

methodology similar to that given on pp. 1098–1101, [34], pp. 57–59, [127], pp. 116–119,
[165], and in Chap. 4, [128].

 
The effects of the gravitational force and the aerodynamic drag force are not taken into

account.

 



Appendix A

Kinematics of Constrained Rigid Multibody
Systems Subject to Velocity Constraints That
May Not be Independent
This Appendix presents some elements of the kinematics of
constrained rigid multibody systems. The relevant results are obtained
mainly from [10, 63, 64, 70, 73, 81, 84, 94, 107, 125, 147, 153–155, 168,
215]. The assumptions, results and methods employed are as follows.

1.
It is assumed that right-handed Cartesian co-ordinate systems are
used throughout.

 
2.

There is an inertial reference frame I and an associated co-
ordinate system (X, Y, Z) with unit vectors  and with

origin fixed in the inertial reference frame I (bold letters are used
to denote vector and matrix quantities).

 

3. The unit vectors of the inertial reference frame I, , are

given by

(A.1)

and

(A.2)

where  denotes the 3 by 3 unit matrix. The unit vectors 

 are expressed directly in the inertial reference frame I.

 



This can be explicitly indicated by using a superscript (I) as
follows , where , , , (A.1).

4.
Consider a constrained rigid multibody system consisting of N
rigid bodies and subject to a total of m nonholonomic and
holonomic velocity constraints that may not be independent.

 

5.
For each rigid body i, there is a body reference frame and an

associated co-ordinate system  with unit vectors

 and with origin fixed at the center of mass of rigid

body i, . Thus, body reference frame  translates

and rotates together with rigid body i.

 

6.
The unit vectors of the body reference frame , ,

are given by

(A.3)

and

(A.4)

The unit vectors  are expressed directly in the body

reference frame . This can be explicitly indicated by using a

superscript  as follows , where , 

, , (A.3).

 

7. Let  denote the vector of generalized co-ordinates and  the



vector of generalized velocities describing the motion of the
multibody system relative to the inertial reference frame I where

(A.5)

(A.6)

(A.7)

, , and t denotes time. The selected

generalized co-ordinates  are suitable for describing the inertial

position and orientation of the multibody system.
In this work, the generalized co-ordinates  are generally

dependent ([10, 60–62, 70, 73, 81, 84, 107]).

 

8. The translational motion of each rigid body can be described by
three generalized co-ordinates and the rotational motion can be
described by three generalized co-ordinates. In particular, a vector
of generalized co-ordinates  can be selected for each rigid body

i. An appropriate selection is  , 

, where the following holds.

a.
, ,  denote the co-ordinates of the center of mass of rigid

body i with respect to the inertial co-ordinate system (X, Y, Z), 
.

 

b.
, ,  denote the Euler rotation angles required to bring

the inertial co-ordinate system (X,  Y,  Z) into alignment with
the body co-ordinate system    (using, for

 

 



example, the rotation axis sequence ), 

 ([10, 70, 73, 81, 94, 107, 147, 155]).

In this case, the vector of generalized co-ordinates for the
constrained rigid multibody system is given by , ,..., 

.

9.
Consider the case of a rigid body moving in three-dimensional
space and assume that there are no constraints on its motion.
Then it follows that the rigid body has three translational degrees
of freedom and three rotational degrees of freedom, for a total of
six degrees of freedom ([10, 70, 73, 81, 107, 147, 155]).

 

10.
Hereafter, the time variable t and the rigid body index i appearing
in the body reference frame label  and also in other subscripts,

take on the following values, unless stated otherwise,

(A.8)

 

11.
Let  denote the inertial position   of the center of mass of rigid

body i expressed in the inertial reference frame I ([10, 147]),

(A.9)

 

12. In order to describe the orientation of body reference frame 

with respect to the inertial reference frame I some preliminary
results are needed. Let  denote a given vector 

expressed in the inertial reference frame I, and  denote the

same vector expressed in the body reference frame . The

relationship between  and  is given by

 



(A.10)

where  is the rotation matrix from the inertial reference

frame I to the body reference frame  ([10, 73, 81, 147]),

(A.11)

13.
Thus, the orientation of body reference frame  with respect to

the inertial reference frame I is represented by the rotation matrix
 ([94]). The rotation matrix  is given by ([10, 73, 81,

94])

(A.12)

where  is equal to the cosine of the angle between the positive

k axis of body reference frame  and the positive j axis of the

inertial reference frame I, , .

 

14. Given the rotation matrix . Then, by using (A.2), (A.10), it

follows that the unit vectors of the inertial reference frame I
expressed in the body reference frame , , form

the columns of the rotation matrix  as follows

(A.13)

(A.14)

where , , , (A.11). The

 



unit vectors  are expressed as follows

(A.15)

(A.16)

(A.17)

15. Given the rotation matrix . Then, by using (A.4), (A.10), it

follows that the unit vectors of the body reference frame 

expressed in the inertial reference frame I, , form

the columns of the rotation matrix  as follows

(A.18)

(A.19)

where , , , (A.11). The

unit vectors  are expressed as follows

(A.20)

(A 21)

 



(A.21)

(A.22)

16.
If the unit vectors of the body reference frame  expressed in the

inertial reference frame I, , are given then the

rotation matrix  is constructed by using (A.19), that is, 

 (see Chap. 2 for practical examples).

 

17.
By using the unit vectors  and the unit vectors 

 the rotation matrix , (A.12), is represented as

follows

(A.23)

 

18. From (A.10), (A.12), (A.23), it follows that

(A.24)

(A.25)

(A.26)

Th it f ll f th b th t th t ti t i

 



Thus, it follows from the above that the rotation matrices , 

, are all orthogonal matrices .

19.
By taking the time derivative of both sides of (A.26), the following
relation is obtained

(A.27)

(A.28)

where the time derivative of the rotation matrix is obtained by
computing the time derivative of each element of the rotation
matrix,  , , 

, . From (A.28) it follows that 

 is a 3 by 3 skew-symmetric matrix ([10, 73, 81]).

 

20.
The rotation matrix from body reference frame  to body

reference frame  is obtained from (A.24) as follows

(A.29)

 

21.
In order to simplify the presentation, it is assumed that the
rotation matrix  of rigid body i is parameterized by using 

generalized co-ordinates, where . For example, for

three dimensional motion the rotation matrix can be
parameterized by using  Euler angles , while for planar

motion the rotation matrix can be parameterized by using 

Euler angle ([10, 81, 94]).

 

It is possible to parameterize the rotation matrix by using



22.
It is possible to parameterize the rotation matrix by using 

generalized co-ordinates. In this case, there will be 

independent equality constraints involving the selected
generalized co-ordinates. For example, if the rotation matrix is
parameterized by using  Euler parameters then ,

implying that a single equation constrains the four Euler
parameters (Chaps. 7, 8, [10], Chaps. 4, 5, [81]).

 

23.
Consider the case where the rotation matrix  is

parameterized by using three Euler angles. Then, the rotation
matrix  is determined as a function of the Euler angles as

follows ([10, 81, 94]).

 

24. First, assume that the inertial co-ordinate system (X, Y, Z) is
rotated about one of its axes X, Y or Z, through a positive angle 

resulting in a co-ordinate system  ([10, 81, 94]).

The three possible single rotations and the associated rotation
matrices are as follows ([10, 73, 81, 94]).

a.
Single rotation about the Z axis through a positive angle .

The rotation matrix is denoted by  and is given by

(A.30)

 

b.
Single rotation about the X axis through a positive angle .

The rotation matrix is denoted by  and is given by

(A.31)

 

 



c.
Single rotation about the Y axis through a positive angle .

The rotation matrix is denoted by  and is given by

(A.32)

 

25. Second, assume that the inertial co-ordinate system (X, Y, Z) is
successively rotated about three valid rotation axes such that the
resulting co-ordinate system is parallel to the body co-ordinate
system . The rotation angle about the first axis is

denoted by , the rotation angle about the second axis is

denoted by  and the rotation angle about the third axis is

denoted by . The rotation matrix  is determined by

computing the product of three rotation matrices, (A.30)–(A.32),
in the correct order ([10, 94]). There are twelve valid rotation axis
sequences ([10, 94]). For example, for the valid rotation axis
sequence , the rotation matrix  is determined

as follows.

a.
Rotation angle about first axis is : The inertial co-ordinate

system (X, Y, Z) is rotated about the  axis, in this case the Z

axis, through a positive angle , resulting in a co-ordinate

system . The rotation matrix after one rotation

is given by

(A.33)

 

 



b.
Rotation angle about second axis is : The co-ordinate

system  is rotated about the  axis, in this case

the  axis, through a positive angle , resulting in a co-

ordinate system . The rotation matrix after two

rotations is given by

(A.34)

 

c. Rotation angle about third axis is : The co-ordinate system 

 is rotated about the  axis, in this case the 

 axis, through a positive angle , resulting in a co-

ordinate system , that is parallel to the body co-

ordinate system   . The rotation matrix after

three rotations is given by

(A.35)

 

By using (A.30)–(A.32), the rotation matrix  for several

other valid rotation axis sequences (given in brackets below), is
computed as follows ([10, 94])

(A.36)

(A.37)

(A.38)

26. The time derivative of the unit vectors  in  



reference frame I is denoted by ,

and is directly related to the angular velocity  of reference

frame  with respect to reference frame I, and expressed in

reference frame , as follows (Chap. 2, [10], Chap. 4, [81])

(A.39)

(A.40)

(A.41)

where , and

(A.42)

Both sides of Eqs. (A.39)–(A.41) are expressed in reference frame
I. If the unit vectors  are given (that is, the rotation

matrix  is given), and the time derivatives of the unit vectors

in reference frame I denoted by , , 

are given, then the angular velocity  is obtained directly from

(A.39)–(A.41).
27. The following relations hold for the angular velocity

( )



(A.43)

(A.44)

(A.45)

In addition, by using (A.45), (A.29), it follows that
(A.46)

 

28. The time derivatives of the unit vectors  in

reference frame I are denoted by , , 

, they are expressed in reference frame  and are

obtained by multiplying both sides of (A.39)–(A.41) from the left
by  as follows

(A.47)

(A.48)

 



(A.49)

29.
Let  denote a given vector  expressed in reference

frame ,

(A.50)

where , , , and 

. Since  generally varies with time t it follows

that  will also generally vary with time t. A typical example is

where  is the position vector of a point relative to the origin

of reference frame .

 

30. The time derivative of the vector  in reference frame  is

given by the time derivative of each element of , (A.50), as

follows (Chap. 2, [10])

(A.51)

 



where .
31.

Let  denote the given vector  expressed in reference frame I

as follows

(A.52)

where , , , and 

.

 

32.
The time derivative of the vector  in reference frame I is given

by the time derivative of each element of , (A.52), as follows

(A.53)

where .

 

33. By using (A.39)–(A.41), (A.52), (A.50), the time derivative in
reference frame I, , is related to the time derivative in

reference frame , , and the angular velocity , as

 



follows (Chap. 2, [10], Chap. 4, [81])

and

(A.54)

Both sides of Eq. (A.54) are expressed in reference frame I.
34. Relation (A.54) can be expressed in reference frame  by

multiplying both sides of (A.54) from the left by , as follows
 



(A.55)

35.
The time derivative of the vector  in reference frame I, and

expressed in reference frame , is denoted by  and is

computed by using (A.55) as follows

(A.56)

 

36.
In direct analogy to the relation (A.54), the time derivative in
reference frame , , is related to the time derivative in

reference frame I, , and the angular velocity , as

follows

(A.57)

 

37. By substituting the expression on the right-hand-side of (A.57) for
 in (A.54), and using (A.43), the following relation is

obtained,

(A 58)

 



(A.58)

38.
Similarly, the time derivative of the vector  in reference frame 

, and expressed in reference frame I, is denoted by 

and is computed by using (A.57) as follows

(A.59)

 

39. For any two vectors , , , 

, the following relations hold (Chap. 2, [81]),

(A.60)

where ,  are skew-symmetric matrices given by

(A.61)

Thus, using (A.60)–(A.61), Eq. (A.54) can be expressed as follows

(A.62)

(A.63)

where  and  are skew-symmetric matrices given by

(A 64)

 



(A.64)

(A.65)

40. A relation for the second time derivative of  in reference frame

I, , is obtained as follows.

First, compute the time derivative of both sides of Eq. (A.54) in
reference frame I,

(A.66)

The structure of each of the terms on the right-hand-side of (A.66)
matches the structure of the term on the left-hand-side of (A.54).

Second, apply relation (A.54) to each of the two terms on the
right-hand-side of (A.66),

(A.67)

(A.68)

Third by using (A 66)–(A 68) it follows that

 



Third, by using (A.66)–(A.68), it follows that

(A.69)

In the sequel two practical applications of the above derivations
are considered.

41. First, without loss of generality, consider the inertial position
vector of a point P fixed in rigid body 1 and given by

(A.70)

where  is the position vector of point P relative to the origin

of body reference frame , . Since the

vector  is fixed in body reference frame , it follows that

(A.71)

The inertial velocity of point P is obtained by using (A.54), (A.63),
(A.71), as follows

(A.72)

(A.73)

where

(A.74)

 



By using (A.72), (A.69), (A.71), the inertial acceleration of point P
is given by

(A.75)

42. Second, without loss of generality, consider the case of a point
mass d whose motion is specified relative to the body reference
frame  as follows

(A.76)

where  is the position vector of the point

mass relative to the origin of body reference frame . Then, by

using (A.76) and (A.72), (A.75), (A.69), the position of the point
mass relative to the origin of the inertial reference frame is given
by

(A.77)

and the velocity and acceleration are given by

(A.78)

(A.79)

 



43.
By using (A.4), (A.51), it follows that

(A.80)

 

44.
Thus, given the rotation matrix , expressions for the unit

vectors  and their time derivatives in the inertial

reference frame I are computed by using (A.19) or (A.53) as
follows

(A.81)

or

(A.82)

(A.83)

(A.84)

where , .

 

45. By using (A.54), (A.80)–(A.84), the following equations are
obtained  



(A.85)

implying that

(A.86)

(A.87)

(A.88)

Thus, given expressions for the left-hand-sides of (A.86)–(A.88) in
terms of , and in terms of the time derivatives of the

unit vectors  in the inertial reference frame I,

(A.81)–(A.84), the three elements of the angular velocity vector 
 are obtained by using any two of the three Eqs. (A.86)–

(A.88).
46. Equations (A.86)–(A.88) are expressed in condensed form as

follows (Chap. 4, [10, 81])

(A.89)

 



where

(A.90)

((A.28)).
47.

The following results, (A.91)–(A.99), are analogous to (A.80)–
(A.88), for the rotation matrix . Using (A.2), it follows that

(A.91)

 

48. Thus, given the rotation matrix , expressions for the unit

vectors  and their time derivatives in the body

reference frame  are computed by using (A.14) or (A.51) as

follows

(A.92)

or

(A.93)

(A.94)

(A 95)

 



(A.95)

where , .

49.
By using (A.57) and (A.91)–(A.95), the following equations are
obtained

(A.96)

implying that

(A.97)

(A.98)

(A.99)

where  denotes the angular velocity of the

body reference frame  with respect to the inertial reference

frame I, expressed in the inertial reference frame I.

 

50. The angular velocity  is represented as follows ((A.86)–

(A.88), (A.81)–(A.84))

(A 100)

 



(A.100)

where . From (A.100) it follows that

(A.101)

51.
The inertial velocity and acceleration of the center of mass of rigid
body i is obtained from (A.9),

(A.102)

(A.103)

where , , 

, . From

(A.102) it follows that

(A.104)

 

52. For the multibody system consisting of N rigid bodies, Eq. (A.9)
and Eqs. (A.102), (A.103), are represented as follows

(A.105)

(A.106)

(A.107)

 



where

(A.108)

(A.109)

(A.110)

, , , , .

53. By using (A.54), the angular acceleration of body reference frame 
 is defined as the time derivative of the angular velocity ,

(A.100), in the inertial reference frame I as follows ([10])

(A.111)

 



(A.112)

where , 

.

54.
For the multibody system consisting of N rigid bodies, Eqs.
(A.100), (A.112), are expressed as follows

(A.113)

(A.114)

where

(A.115)

(A.116)

, , , .

 

55. It is assumed throughout that

(A.117)

where  denotes an open set containing the admissible values

for the vector of generalized co-ordinates  (see Chap. 2 for

practical example).

 



56.
Equations (A.106), (A.113), are expressed as follows

(A.118)

where

(A.119)

. In this work, it is assumed that the

generalized co-ordinates , (A.5), are selected such that 

and the matrix , (A.119), has full column rank , that is,

(A.120)

Since the matrix  has full column rank, (A.120), it follows that

the linear transformation (A.118) is one-to-one (pp. 583–584,
[80]).

 

57.
Thus, given a value for the left-hand-side of (A.118). It follows that
the inverse transformation yields a unique vector  given by

(A.121)

(Theorem 11.5.1, pp. 144–145, Lemmas 9.2.8, 9.2.9, pp. 116–117,
[80]).

 

58. By using (A.120) it follows that  is a  symmetric

positive definite and invertible matrix that has rank n (Corollary
14.2.14, pp. 214–215, Eqs. (2.4), (2.5), p. 82, Theorem 13.3.7, p.
188, [80]). From the above it follows that  is a 

rectangular matrix that has full row rank,

 



(A.122)

(Lemma 8.3.2, p. 83, [80]). However, the matrix  does

not have full column rank (except in the case where ).

Thus, the linear transformation (A.121) is in general not one-to-
one.

59.
The motion of the multibody system is subject to a total of m
nonholonomic     and holonomic velocity constraints (or kinematic
constraints ). It is assumed that all the velocity constraints are not
explicit functions of time and that they are ideal ([10, 51, 73, 81,
107, 124, 129, 137, 147, 155]). By using (A.5), (A.6), and (A.105),
(A.106), (A.113), the velocity constraints are expressed from the
outset in terms of the vector of generalized co-ordinates , and

the vector of generalized velocities , (A.6), as follows

(A.123)

where  is the velocity constraints matrix , 

. Note that the time derivative of each geometric constraint

  results in a holonomic velocity constraint that is part of the
velocity constraints (A.123).

 

60.
It is assumed that each element of the matrix  is a smooth

function of , , (A.117). The initial conditions of the

multibody system  and  satisfy the velocity constraints

(A.123), and , (A.117). Henceforward, only admissible

motions of the system that satisfy  for all , are

considered.

 

61. It is assumed that  is equal to a constant value , that



is,

(A.124)

It follows from (A.124) that the velocity constraints   (A.123) may
not be independent,

(A.125)

The velocity constraints (A.123) are independent if

(A.126)

The velocity constraints (A.123) are not independent if

(A.127)

 

62.
The relation between the dimension of the null space of , 

, and  is given by (Theorem 31, p. 281, [126])

(A.128)

Using (A.124), (A.128), it follows that

(A.129)

 

63. The kinematic model of the constrained rigid multibody system is
derived by using the velocity constraints (A.123). Let  denote

the vector of  independent generalized velocities ((A.129))

given by

(A.130)

. Each element of  is set equal to an appropriately

chosen unique element of  as follows (Sect. B.3.1)

(A 131)

 



(A.131)

such that

(A.132)

64.
One possible approach for selecting the elements of  is to set

them equal to the elements of  that are directly associated with

or directly actuated by the applied forces and torques, and such
that (A.132) holds (see Chap. 3 for practical example).

 

65.
Let  denote the associated vector of  independent

generalized co-ordinates obtained from (A.131) as follows

(A.133)

 

66.
Equations (A.123), (A.131), are solved for  in terms of , and

the solution is expressed as follows ([65], Sect. B.3.1)

(A.134)

where  is the null space matrix and satisfies the

following equation

(A.135)

It follows that the expression for , (A.134), solves the

homogeneous equation (A.123) representing the velocity
constraints ([65]). It is assumed that the derived expression for ,

(A.134), is valid for all , (A.117). Thus, the kinematic model

of the constrained rigid multibody system is given by (A.134).

 

Th di h l f h i



67. The vectors corresponding to the columns of the matrix  span

the null space . By using (A.129), it follows that the

matrix  has full column rank ,

(A.136)

The mathematical form of the null space matrix  is generally

different for each particular choice of the vector of independent
generalized velocities , (A.131). This implies that the form of

the kinematic model, (A.134), is not unique ([82, 99, 107]).

 

68.
The acceleration kinematic model is obtained by taking the
derivative with respect to time t of (A.134),

(A.137)

 

69.
For later use, the velocity constraints (A.123) are converted to
acceleration constraints by differentiating with respect to time t
the left-hand-side of (A.123),

(A.138)

 

70. The vector of generalized accelerations  given by (A.137),

and the vector of generalized velocities  given by (A.134), jointly

satisfy the acceleration constraints, (A.138), as follows (and using
(A.135))

(A.139)

 



71.
The virtual displacement  associated with the velocity

constraints (A.123) satisfies the following equation ([10, 51, 73,
81, 107, 124, 147, 155, 168])

(A.140)

where . It follows from (A.140) that  is constrained to

lie in the null space of the velocity constraints matrix .

 

72.
By using the kinematic model (A.134) an expression for the
virtual displacement  is obtained as follows ([51, 73, 107])

(A.141)

where  is the independent virtual displacement associated

with , (A.133),  is not constrained, . Since the

matrix  has full column rank , (A.136), it follows that the linear

transformation (A.141) is one-to-one (pp. 583–584, [80]). By
employing (A.141), (A.135), Eq. (A.140) can be obtained as
follows

(A.142)

 

73. The virtual inertial position change of the center of mass of rigid
body i, , and the vector of virtual infinitesimal rotations of the

body reference frame , , are related to the virtual

displacement  as follows ((A.104), (A.101), p. 476, [10], Chap.

4 [81])

 



4, [81])

(A.143)

(A.144)

where , . Note that  is expressed in the

inertial reference frame I, and  is expressed in the body

reference frame .

74. For the multibody system consisting of N rigid bodies, Eqs.
(A.143), (A.144), are expressed as follows

(A.145)

(A.146)

where

(A.147)

, , and , , are given by (A.109), (A.115),

respectively. Equations (A.145), (A.146), are expressed as follows

(A.148)

where  is given by (A.119). Since the matrix  has full column

rank, (A.120), it follows that the linear transformation (A.148) is
one-to-one (pp. 583–584, [80]).

 



75.
Thus, given a value for the left-hand-side of (A.148). It follows that
the inverse transformation yields a unique virtual displacement 

 given by

(A.149)

(Theorem 11.5.1, pp. 144–145, Lemmas 9.2.8, 9.2.9, pp. 116–117,
[80]). However, as mentioned above, the linear transformation
(A.149) is in general not one-to-one.

 

76.
The velocity constraints of the multibody system expressed in
terms of the variables  and  are as follows ([81])

(A.150)

where . Equation (A.123) expresses the

velocity constraints in terms of the variables  and ,

and can, in principle, be obtained by applying the one-to-one
linear transformation (A.118) to Eq. (A.150) as follows ([81])

(A.151)

(A.152)

where .

 

77. Furthermore, it follows from (A.150) that , , satisfy the

following equation ([81])
(A.153)

 



Equation (A.140) expresses the constraints on the virtual
displacement , and can, in principle, be obtained by applying

the one-to-one linear transformation (A.148) to Eq. (A.153) as
follows ([81])

(A.154)

(A.155)

Appendix B

Lagrange Equations for Constrained Rigid
Multibody Systems Subject to Velocity
Constraints that May Not be Independent
This Appendix presents some elements of the dynamics of constrained
rigid multibody systems. The d’Alembert-Lagrange principle is applied
in order to extend the Lagrange equations for the case of constrained
rigid multibody systems subject to velocity constraints that may not be
independent.

B.1 Dynamics of Constrained Rigid Multibody Systems
This Section summarizes some elements of the dynamics of constrained
rigid mutlibody systems and builds upon the material on kinematics
presented in Appendix A. The results are obtained mainly from [5, 7,
10, 13, 38, 51, 63, 64, 66, 73, 81, 94, 107, 125, 137, 147, 153, 168, 178,
181, 215]. Some related results and applications are given in [36, 39,
50, 74–76, 93, 117, 129, 150, 154, 167, 172, 179, 214]. The
assumptions, results and methods employed are as follows.

1. The earth is a sphere with a uniform mass distribution, is non-
rotating and is considered to be an inertial reference frame I with  



an associated co-ordinate system (X, Y, Z).
2.

A very small part of the surface of the earth is assumed to be
locally flat and all rigid bodies move on or very close to this part
of the surface of the earth. The origin of the inertial co-ordinate
system (X, Y, Z) is fixed on the locally flat surface of the earth, the
inertial (X, Y) plane is parallel to the surface of the earth and the Z
axis is pointing upwards.

 

3.
The gravitational acceleration is constant and is given by ([12])

(B.1)

where  m/s .

 

4.
As stated in Appendix A, it is assumed throughout that ,

(A.117).

 

5.
It is assumed that the constrained rigid multibody system is
disassembled into separate rigid bodies by removing all the
constraining joints and contacts, and by replacing them with the
relevant constraint forces and constraint torques acting on each
separate rigid body ([10, 81, 107, 131, 144]). Some texts refer to
the above process as the principle of constraint release (p. 267,
[107]).

 

6.
In addition, the elements exerting applied forces and applied
torques on the rigid bodies are removed and replaced with the
relevant applied forces and applied torques acting on each
separate rigid body. The applied forces and torques are exerted by
actuators, springs, dampers, etc, and are assumed to be specified
as functions of  and  ([10, 81]).

 

7. Lastly, the earth’s (resultant) gravitational force acting at the
center of mass of separate rigid body i is given by ([12])

(B.2)

where is the constant mass of rigid body i

 



where  is the constant mass of rigid body i, .

8.
Thus, all the forces and torques acting on each separate rigid body
are classified as constraint forces and torques or as applied forces
and torques or as the gravitational force. The above-mentioned
collection of separate rigid bodies together with the forces and
torques acting on each separate rigid body is referred to as the
free-body diagram of the constrained rigid multibody system ([10,
131, 144]).

 

9.
The resultant applied force and torque, and the resultant
constraint force and torque acting on separate rigid body i are
equal to the vector sum of the individual applied forces and
torques, and to the vector sum of the individual constraint forces
and torques acting on separate rigid body i, respectively, and are
denoted as follows.

 

10.
 denotes the resultant applied force acting at the center of

mass of separate rigid body i, and  denotes the resultant

applied torque acting about the center of mass of separate rigid
body i.

 

11.
 denotes the resultant constraint force acting at the center of

mass of separate rigid body i, and  denotes the resultant

constraint torque acting about the center of mass of separate rigid
body i.

 

12.
The resultant constraint force and torque  and  are such

that the motion of each separate rigid body i is identical to its
motion when it is part of the constrained rigid multibody system
satisfying all the velocity constraints (A.123).

 

13. The resultant constraint force and torque  and  are not



known.  
14.

It is assumed that the resultant applied force  and the

resultant applied torque  are sufficiently smooth functions of 

, ,

(B.3)

(B.4)

The resultant applied torque  is equal to the sum of the

following torques.

a.
The sum of the torques about the center of mass of separate
rigid body i resulting from the applied forces acting on
separate rigid body i.

 

b.
The sum of the pure applied torques acting about the center
of mass of separate rigid body i.

 

 

15. The free-body diagram is useful in determining expressions for
the resultant applied force  and the resultant applied torque 

 in terms of specified applied forces and torques acting on

separate rigid body i (see [10, 81, 147, 181], and example in Chap.
2). The resultant applied force  and the resultant applied

torque  are required in the computation of the vector of

generalized applied forces  that appears in the d’Alembert-

Lagrange principle and in the Lagrange equations.

 



16.
In order to simplify the presentation the following notation is
introduced

(B.5)

where , , .

 

17.
It can be shown that the virtual work of the applied forces and
torques acting on separate rigid body i is given by ([10, 81, 147,
181])

(B.6)

where the , , , satisfy Eq. (A.153), and using

(A.147).

 

18.
By applying (A.143), (A.144), the virtual work , (B.6), is

expressed in terms of  as follows

(B.7)

where  satisfies (A.140).

 

19. By using (A.145)–(A.147), and (B.5), the total virtual work of all
the applied forces and torques acting on the N separate rigid
bodies is given by ((B.7))

(B 8)

 



(B.8)

where  satisfies (A.140), and  is the vector of generalized

applied forces . Thus, it follows from (B.8) that  is given by

(B.9)

, (B.3)–(B.4).

20.
The vector of generalized applied forces , (B.9), can generally

be expressed as the sum of two terms as follows ([154])

(B.10)

where  is given as a function of  and 

,  is given as a function of , ,

and  is the vector of applied forces and torques. The

vector  is also referred to as the vector of control inputs

and is used to control the constrained rigid multibody system. In
some practical applications the number of control inputs, , is

equal to the number of independent generalized velocities , ,

(B.11)

(see (A.130), (A.131), and the derivations for the mobile ADS in
Chap. 4).

 

21. The angular momentum of separate rigid body i about its center
of mass and expressed in body reference frame , , is given

by (p. 423, [10], Chap. 5, [81])

 



y (p , [ ], p , [ ])

(B.12)

where , and  denotes the

constant inertia matrix of separate rigid body i about its center of
mass and expressed in the body reference frame . The inertia

matrix  is symmetric, , and positive definite, 

 (p. 328, [10]).

22.

By using (A.56), the time derivative of the angular momentum of
separate rigid body i, , in the inertial reference frame I, and

expressed in the body reference frame , is given by

(B.13)

(B.14)

 

23.
For later use, define the following block-diagonal matrices

(B.15)

(B.16)

where , .

 

24. Since the matrices  and , , are all

i d i i d fi i i f ll h h bl k di l

 



symmetric and positive definite , it follows that the block-diagonal
matrices , (B.15), and , (B.16), are also symmetric and

positive definite

(B.17)

(equations (3.3), (3.5), pp. 186–187, [80]).
25.

Let  denote the following block-diagonal matrix

(B.18)

. Then it follows from the above that the block-

diagonal matrix  is symmetric and positive definite

(B.19)

 

26.
The gravitational force given by (B.2) is conservative. It follows
that the (gravitational) potential energy of separate rigid body i, 

, is given by ([12])

(B.20)

where  denotes the vertical or Z co-ordinate of the inertial

position of the center of mass of separate rigid body i.

 

27.
The sum total of the potential energies of the N separate rigid
bodies is given by

(B.21)

 

28. The kinetic energy of separate rigid body i is equal to the sum of
the translational kinetic energy and the rotational kinetic energy



the translational kinetic energy and the rotational kinetic energy ,
and is given by ([10, 73, 81, 107, 147, 155, 168])

(B.22)

 

29. The sum total of the kinetic energies of the N separate rigid bodies
is given by ((B.22), (B.15)–(B.18))

(B.23)

. Since the matrix  is positive definite ,

(B.19), it follows that the total kinetic energy  of the

multibody system, (B.23), is always positive, that is,

 



(B.24)

30.
The total kinetic energy , (B.23), is expressed in terms of , 

, by using (A.106), (A.113), as follows

(B.25)

(B.26)

where

(B.27)

 is the mass matrix, .

 

31.
The matrix  is symmetric and positive definite, (B.19).

Furthermore, since it is assumed that the matrix  has full

column rank , (A.120), it follows that the matrix ,

(B.27), is also symmetric and positive definite , that is,

(B.28)

(Theorem 14.2.9, p. 213, [80], and Theorem 4.2.1, p. 140, [71]).

 

32. Since the mass matrix  is symmetric and positive definite,

(B.28), it follows that the inverse of the mass matrix, , is

i d i i d fi i h i

 



symmetric and positive definite, that is,

(B.29)

(equations (2.4), (2.5), p. 82, and Theorem 13.3.7, p. 188, [80]).
33.

It follows from (B.26), (B.27), (B.28), that the total kinetic energy 
 expressed in terms of , , is always positive, that is,

(B.30)

 

34.
Let  and  denote the following vectors ([10, 41, 73, 107,

129, 147, 155, 168])

(B.31)

(B.32)

where , , and 

, , are given by (B.26), (B.21). It follows from (B.31),

(B.32), (B.26), (B.21), that  simplifies to the following

form

(B.33)

where  is given by (B.27), and .

 

35. It is assumed that the d’Alembert-Lagrange principle holds and is



given by ([5, 7, 10, 13, 35, 36, 38, 41, 51, 66, 73, 81, 99, 107, 124,
129, 137, 147, 153, 168])

(B.34)

where  satisfies (A.140), and  is the vector of generalized

applied forces given by (B.9).

 

36.
Using the same methodology that was applied to obtain (B.9), the
vector of generalized gravitational forces  is given by

(B.35)

where  is given by (B.5), and . Note

that in (B.33), the term  includes the term .

 

37.
By using (B.33), (B.34), the d’Alembert-Lagrange principle is
expressed in the following form

(B.36)

where  satisfies (A.140).

 

38. By using the relation (A.141), the d’Alembert-Lagrange principle
(B.36) is expressed in terms of the independent virtual
displacement  as follows ([73, 107, 129])

(B.37)

Since  is not constrained, Eq. (B.37) must hold for all 

. Thus, the following equation must hold at each time t

(B 38)

 



(B.38)

39.
In [51], the d’Alembert-Lagrange principle is developed for the
cases of nonlinear nonholonomic velocity constraints and
acceleration constraints. The approach in reference [51] is to
differentiate with respect to time in order to convert velocity
constraints to acceleration constraints, and acceleration
constraints to third order constraints. It is stated in [51] that the
derivation of the above-mentioned results constitutes a proof of
the Chetaev principle that was previously applied in the literature
as an axiom (that is, without formal proof).

 

40. Consider the case where the actual motion trajectory of the
constrained rigid multibody system is obtained via precise
experimental measurements over a finite time horizon 

and denoted by

(B.39)

Then, the measured motion trajectory (B.39) satisfies the
following at each time t.

a. The d’Alembert-Lagrange principle (B.36), (A.140), or
equivalently Eq. (B.38), that is, 

.

 

b.
The velocity constraints , (A.123) (that is, the

expression on the left-hand-side of (A.123) evaluates to the
zero vector ), and thus the acceleration constraints 

, (A.138).

 

c.
The kinematic model , (A.134), and thus the

acceleration kinematic model, 
(A 137)

 

 



, (A.137).

d.
The conditions , (A.117), , (A.124), 

, (A.136).

 

B.2 Lagrange Equations for Constrained Rigid Multibody
Systems Subject to Velocity Constraints that May Not be
Independent
A number of references ([10, 36, 107, 129, 147, 172, 179]) deal with the
dynamic modelling of constrained rigid multibody systems whose
motion is subject to independent velocity constraints in the form of
(A.123), where , (A.124).

In [62], the Lagrange equations are extended for constrained rigid
multibody systems subject to velocity constraints that may not be
independent. The derived Lagrange equations are given by

(B.40)

and by the velocity constraints (A.123), where  is the vector of

Lagrange multipliers, .

Theorem B.1  Lagrange Equations for Constrained Rigid
Multibody Systems Subject to Velocity Constraints That May Not be
Independent Given a constrained rigid multibody system satisfying the
assumptions and properties presented in Appendix A and Appendix B.

The measured motion trajectory of the constrained rigid multibody
system denoted by   , , satisfies

at each time t the d’Alembert-Lagrange principle, that is,

(B.41)



where  satisfies (A.140), if and only if there exists a vector  called

the vector of Lagrange multipliers, , such that

(B.42)

Proof The Proof of Theorem B.1 consists of two parts.
Part 1: Equations (B.42) and (A.140) imply Eq. (B.41).
By substituting the expression for the vector ,

(B.42), into (B.41), and by using (A.140), it follows that

(B.43)

Part 2: Equations (B.41) and (A.140) imply Eq. (B.42).
The Proof of Part 2 is given in the following steps. Certain results

from linear algebra are included for greater clarity.

1.
Let  denote a column vector containing the elements of

the ith row of the matrix , (A.123), . Then the row

space of the matrix  is given by ([126])

(B.44)

 

2. Since the column vector  contains the elements of the ith

column of the matrix , , it follows that the

column space of  equals the row space of  ([126])

 



(B.45)

3.
It further follows that (Corollary 30, p. 281, [126])

(B.46)

 

4.
In addition, it can be shown that (Theorem 21, p. 537, [126])

(B.47)

 

5.
The column vectors ,  span the row space 

 and the column space  ([126]), and are in

general not linearly independent since 
, (A.124).

 

6.
Given a vector  that lies in the column space .

Then it follows from (B.44), (B.45), that there exists a vector 
 such that ([126])

(B.48)

The vector  that satisfies (B.48) is in general not unique since 

, (A.124).

 

7.
The null space of  is given by ([126])

(B.49)

 

8. From (B.49), (B.44), (B.45), it follows that all the vectors in the
null space  are orthogonal to all the vectors in the

l

 



column space .

9.
Thus, the orthogonal complement of the null space 

equals the column space , and is denoted as follows

(Theorem 14, p. 516, [126])

(B.50)

 

10.
From (A.140), (B.49), it follows that  lies in the null space 

. Furthermore, Eq. (B.41) implies that the vector 

 is orthogonal to . Thus, from the above

it follows that the vector  lies in 

 and hence in the column space , (B.50).

 

11.
Thus, given the vector , there exists a

vector  called the vector of Lagrange multipliers, , such

that ((B.48))

(B.51)

The vector of Lagrange multipliers  that satisfies (B.51) is in

general not unique since ,

(A.124).

 

12. If the velocity constraints are independent, that is, , then

the vector of Lagrange multipliers  that satisfies (B.51) is unique
 



and is given by

(B.52)

(Theorem 11.5.1, pp. 144–145, Lemmas 9.2.8, 9.2.9, pp. 116–117,
[80]).

13.
If the velocity constraints are not independent, that is, 

then the vector of Lagrange multipliers  that satisfies (B.51) is

not unique. 

 

Thus, the Lagrange equations are given by

(B.53)

and the velocity constraints ((A.123))

(B.54)

The vector of generalized constraint forces  is defined as follows

([147])

(B.55)

where . By using (B.33), (B.27),

(B.9), a unique vector of expressions is derived for the right-hand-side
of (B.55) as a function of , , . Thus, the vector of

generalized constraint forces  is equal to a unique vector of

expressions, implying that

(B.56)



From (B.51), (B.55), it follows that

(B.57)

As mentioned above, given  and  in (B.57), the vector of Lagrange

multipliers  that satisfies (B.57) is in general not unique since 

, (A.124). However, since the vector

of generalized constraint forces  is unique, (B.56), it follows from

(B.57) that

(B.58)

If the measured motion trajectory of the constrained rigid mutlibody
system, (B.39), is substituted in the expressions on the right-hand-side
of (B.55) then at each time t the expression 

evaluates to a unique real vector in  representing the vector of

generalized constraint forces . Thus, a total of n generalized

constraint force components are obtained at each time t.
If there are no velocity constraints, (A.123), on the motion of the

multibody system then it follows from (B.41), (A.140), that the
Lagrange equations are given by

(B.59)

B.3 On the Solution of Consistent Simultaneous Linear
Equations
Consider the following problem. Compute the vector  satisfying

the following set of consistent simultaneous linear equations (SLEs)

(B.60)



where the matrix  and the vector  are specified. Note

that the variables m, n, , are used in this Section generically.1 The

given SLEs, (B.60), are consistent implying that ([126])

(B.61)

The matrix  does not necessarily have full rank, that is,

(B.62)

The homogeneous system associated with (B.60) is given by

(B.63)

where . The null space of  is the solution set of the

homogeneous system (B.63) ([65]). The relation between the
dimension of the null space of , , and  is

given by (Theorem 31, p. 281, [126])

(B.64)

Using (B.62), (B.64), it follows that

(B.65)

If  and Rank  then the SLEs, (B.60), have a unique

solution. In addition, if  and Rank  then the SLEs have a

unique solution. In the following cases the SLEs have an infinite number
of solutions ([65]).

1.
 and . 

2.
 and . 

3.  and . 



4.
 and .  

In the above-mentioned cases the solution set of (B.60) consists of a
general solution given by ([65, 80])

(B.66)

where  denotes a particular solution of (B.60), , and 

denotes a general solution of the homogeneous system (B.63), 

([65, 126]). In order to simplify the presentation,  will be referred to

as a homogeneous solution , (B.63). In the sequel, two alternative
methods are presented for determining a general solution of (B.60).

B.3.1 On the Solution of Consistent SLEs by Partitioning the
Variables into Independent and Dependent Variables
The basic methodology for computing a general solution of (B.60) is as
follows.

First, select , (B.65), of the elements of  to be independent

variables and group them into a vector  as follows

(B.67)

where , and such that

(B.68)

The remaining  elements of  are the dependent variables and

are grouped into a vector  as follows

(B.69)



where . Thus, each element of  and of  is equal to a

unique element of .

Second, set the above-mentioned independent variables  equal to 

 parameters , leading to the following linear system in 

(B.70)

Third, construct the augmented matrix  associated with the joint

linear systems (B.60) and (B.70) in , consisting of a total of 

SLEs, as follows ([65])

(B.71)

Fourth, by applying elementary row operations , transform the matrix 
 to reduced row echelon form given by ([65])

(B.72)

Fifth, the expression for  is obtained from the last column of the

matrix  and is assumed to be in the following parametric form

([65], (B.66))

(B.73)

where  is the null space matrix and , and where



(B.74)

(B.75)

The null space matrix  has full column rank and the  columns of 

are a basis for the null space of the matrix  ([65, 126])

(B.76)

The solution set of (B.60) is expressed in terms of (B.73) as follows
([65])

(B.77)

It follows from (B.67), (B.70), (B.69) and (B.73), that the solution for
the dependent variables  can be expressed in terms of the solution

for the independent variables  and thus in terms of the vector of

parameters  as follows

(B.78)

The particular solution  and the null space matrix  have a specific

form or structure that depends on which elements of  have been

chosen to be independent variables, (B.67), (B.70).
For example, assume that the ith element of the vector  is selected

to be the first independent variable which is then set equal to ,

(B.67), (B.70). It follows that the ith element of  will be equal to 0,

and the ith element of  will be equal to . Thus, the null space

matrix  will have an ith row whose first element is 1 and all the

remaining elements are zeros.



In order to illustrate the above, and without loss of generality,
consider the case where the last  elements of  are selected as the

independent variables as follows

(B.79)

(B.80)

(B.81)

(and assuming that (B.68) holds). In this case, the resulting structures
of ,  and  are as follows

(B.82)

where , , and . Thus, it follows

that

(B.83)

(B.84)

If  in (B.60) then a homogeneous system is obtained. In this

case, , (B.73), and a general solution of (B.60) is given by



(B.85)

If  and Rank , (B.60), then the SLEs have a unique

solution given by

(B.86)

The matrix inverse  in (B.86) can be computed by first forming the
following special augmented matrix ([65])

(B.87)

Then, the reduced row echelon form of  is obtained and is given by

(B.88)

The expression for the matrix inverse  is obtained from the matrix 
, (B.88), .

If  and Rank , (B.60), then the SLEs have a unique

solution given by

(B.89)

The matrix inverse in (B.89) is computed by applying the methodology
described by (B.87), (B.88).

The scientific computing systems Maple ([16]), MATLAB/MATLAB
Symbolic Toolbox ([110, 112]) can be used to practically perform the
above computations for cases where the elements of , , in (B.60) are

numerical and/or symbolic expressions ([33, 91]).

B.3.2 On the Solution of Consistent SLEs by using the
Moore-Penrose Generalized Inverse
A particular solution of (B.60) having a specific property is presented
first. Thereafter, a general solution of (B.60) is given.



The particular solution of (B.60) that has minimum Euclidean norm
for any value of , (B.62), is given by ([80], pp. 568–570,

[126])

(B.90)

where  denotes the Moore-Penrose generalized inverse of the
matrix , ,  where  is any given exact

solution of (B.60), and  denotes the magnitude or Euclidean norm of

 given by

(B.91)

The Moore-Penrose generalized inverse  is unique and satisfies
the four Moore-Penrose conditions ([80], p. 570, [126]) as follows

(B.92)

(B.93)

(B.94)

(B.95)

A generalized inverse of  that satisfies only some of the Moore-
Penrose conditions 1. to 4., (B.92)–(B.95), for example, conditions 1., 2.
and 3., is denoted by , and similarly for other combinations of
the Moore-Penrose conditions ([80]). All such generalized inverses are
not unique, except for .

A generalized inverse  is called a minimum Euclidean norm
generalized inverse of , and is not unique . However, the product 

 is the minimum Euclidean norm solution of (B.60) (Theorem

20.3.6, pp. 497–498, [80]), and is unique , that is,



(B.96)

If the matrix  is square, , and , then  equals

the ordinary inverse of , .
One method for computing numerically the Moore-Penrose

generalized inverse  is the following.

1.
Compute the singular value decomposition of the matrix , (B.60),
given by (Theorem 30, pp. 567–568, [126])

(B.97)

where ,  are orthogonal matrices, the matrix 

, is given by

(B.98)

 is a diagonal matrix given by

(B.99)

and where  are the positive singular values

of , (B.60), , (B.62).

 

2. Compute the Moore-Penrose generalized inverse  as

follows

(B.100)

where the matrix  is given by

(B.101)

 



and  is the diagonal matrix specified in (B.99).

An alternative definition of the Moore-Penrose generalized inverse 
 is given by ([80])

(B.102)

If the elements of the matrix  are rational numbers then the Moore-
Penrose generalized inverse  is computed analytically by applying
(B.102) as follows

(B.103)

If the elements of  contain symbolic expressions then  is
computed by using (B.103), and where the matrix inverse in (B.103) is
computed by using the methodology described by (B.87), (B.88).
However, these computations can potentially become impractical due
to increasing computation time and increasing complexity of the
resulting symbolic expressions. For the special case where , 

, , it follows that , ,

(B.90).
In summary, the six main cases of the SLEs, (B.60), and the

corresponding properties of the particular solution , (B.90), are as

follows.

1. Case P1: The number of SLEs, (B.60), equals the number of
variables, , and the matrix  has full rank, .

a.
The SLEs, (B.60), have a unique solution.  

b.
The inverse of  exists.  

 



c. , (B.90), is the unique solution of (B.60) and . 
2.

Case P2: The number of SLEs, (B.60), equals the number of
variables, , and the matrix  does not have full rank, 

.

a.
The SLEs, (B.60), do not have a unique solution.  

b.
The inverse of  does not exist.  

c.
, (B.90), is the exact solution of (B.60) having minimum

Euclidean norm.

 

 

3.
Case P3: The number of SLEs, (B.60), is less than the number of
variables, , and the matrix  has full rank, .

a.
The SLEs, (B.60), do not have a unique solution.  

b.
It follows that , (B.47), and the

square matrix  is invertible.

 

c.
, (B.90), is the exact solution of (B.60) having minimum

Euclidean norm and .

 

 

4. Case P4: The number of SLEs, (B.60), is less than the number of
variables, , and the matrix  does not have full rank, 

.

a.
The SLEs, (B.60), do not have a unique solution.

 



The SLEs, (B.60), do not have a unique solution.  
b.

The inverse of  does not exist.  
c.

, (B.90), is the exact solution of (B.60) having minimum

Euclidean norm.

 

5.
Case P5: The number of SLEs, (B.60), is greater than the number of
variables, , and the matrix  has full rank, .

a.
The SLEs, (B.60), have a unique solution.  

b.
It follows that , (B.47), and the

square matrix  is invertible.

 

c.
, (B.90), is the unique solution of (B.60) and 

.

 

 

6.
Case P6: The number of SLEs, (B.60), is greater than the number of
variables, , and the matrix  does not have full rank, 

.

a.
The SLEs, (B.60), do not have a unique solution.  

b.
The inverse of  does not exist.  

c.
, (B.90), is the exact solution of (B.60) having minimum

Euclidean norm.

 

 



A general solution of (B.60) is given by (p. 141, [80])

(B.104)

where the vector of parameters  . With reference

to (B.66), (B.104), a particular solution  and a homogeneous solution

 are given by

(B.105)

It follows that (by using (B.92))

(B.106)

(B.107)

By using (B.105), (B.93), (B.95), it can be shown that  is

perpendicular to , that is, , as follows

(B.108)

for all . It follows from (B.108) that

(B.109)

Thus, the Euclidean norm of the general solution  will be greater

than or equal to , (B.105).

Given the fact that (Corollary 11.2.2, pp. 140–141, [80], and (B.65))

(B.110)

(B.111)



It follows from (B.110), (B.111), that the n columns of the matrix 
 span the null space of , and that only  of the n

columns are linearly independent. Thus, the n columns of the matrix 
 are a spanning set but not a basis for the null space of  .
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Footnotes
In the main part of the research monograph m represents the number of velocity constraints,

n represents the number of generalized velocities, and  represents the number of

independent generalized velocities.
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